i INGENJORSHOGSKOLAN

HOGSKOLAN I JONKOPING

=

Technology mapping using SIS

Laboratory 2

in course “Logic synthesis”

2002-version

Written by Tomas Bengtsson and Shashi Kumar

iés* Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

Introduction

Documents needed for this lab

Recommended preparations for this lab

Short introduction to FPGAs

Information about CLBs used in this lab

S R

Tasks

6.1. Making scripts for technology mapping

6.2. Technology-mapping of multiplier

6.3. Technology-mapping of Gray-code converter

6.4. Technology-mapping of a benchmark

7. An example of Technology-mapping

7.1. Description of example

7.2. Some tips

7.3. The example through SIS

7.3.1. Gate Decomposition

7.3.2. LUT Mapping

7.3.3. Post-processing commands

llG'i:\@\l\lUIU]UIUIUIUIUI-k-kWWW

7.3.4. Programmable Logic Block Generation

[EY
D

iég"n Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se

1. Introduction

After acircuit has been optimized using Logic Optimization tools, the next step isto bring the
circuit closer to implementation by using the available information about i mplementation
technology. This step is called Technology Mapping. This step involves converting the
abstract description (FSM or Boolean functions) of the circuit to a network of limited type of
components, normally from alibrary of components. Due to this reason, Technology
Mapping is also sometimes referred as Library Binding. This step involves, selecting
components from the library and forming a network of these components. Normally the
objectives in Technology Mapping are to have the final implementation using a minimum
number of components or to minimize the area of the implementation.

Technology mapping to an FPGA resultsin the final implementation suitable for a specific
FPGA type from a specific company. Thisis because the internal architecture of FPGAs from
different companiesis quite different. The internal architectures of various FPGAs from the
same company also differ depending on the component series. For example, XILINX 4000
series FPGA has different type of logic blocks as compared to 3000 series. There are two
further steps after acircuit has been converted to a network of blocks of a FPGA. These steps
are called Placement and Routing. In the placement step, the logic blocks in the network are
assigned specific physical blocks within the FPGA. In the routing step, the used logic blocks
are connected using programmabl e i nterconnection resources.

In this laboratory, we are only concerned with the first step, which is converting the abstract
design to a network of logic blocks for Xilinx FPGA family.

2. Documents needed for this lab

Among the documents from the first 1ab you will need the document from UCLA (University
of California Los Angeles), which describes the extension of SIS for technology mapping. In
this document we recommend you to skip the first part and start reading the part starting with
a header “Commands provided by UCLA FPGA Mapping Package’. This documents can be

found in Appendix A of this lab manual.

A “hand-in” form that you haveto fill in to passthelab is aso given. That hand in form and
this lab manual can be found in Pingpong.

3. Recommended preparations for this lab

To be ableto use the lab time more efficient we recommend you to study the document from
UCLA the part mentioned in section 2 “Documents needed for thislab”. It isalso
recommended that you complete the task described in section 6.1 “Task 1 Making scripts for
technology mapping” before the lab.

iég"n Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se

4. Short introduction to FPGAs

FPGAs are one family of programmable logic circuits. An FPGA contains programmable
logic blocks and programmabl e interconnection between the blocks. The programmable
blocks are called CLBs (Complex Logic Block). The CLBs contain one or more LUTs (Look
Up Table). A LUT isacombinatory device with some inputs and one output. It can be
programmed to realize any Boolean function. The CLB can be programmed so the output of
the LUTs goes to the output of the CLB direct or viaaflip-flop. This can be done individually
for every LUT. The inputsto the CLB are connected to the inputsin the LUTSs. If the CLB
contains more than one LUT, some inputs to the CLB may be connected to inputs in more
than one LUT.

To connect outputs and inputs of CLBs to other CLBs and to the ports of a chip the
programmabl e interconnection part is used. In thislab we are not going to deal with this. We
are only going to map logic into fit CLBs. We will use some old FPGAS, Xilinx3000 — series
and Xilinx4000 — series. For our purpose we don’t gain anything by using newer ones. The
CLBsin both series hastwo LUTs. The LUTs in Xilinx3000 — series has four inputs and in
Xilinx4000 — series they have five inputs.

The picture below shows an example of asimple CLB. The CLBswe will usein thislab
looks alittle different.

Yo

LUT

0y I i B el o

i el T o B |

5. Information about CLBs used in this lab

Aswritten in the previous section the LUTs in Xilinx 3000-series have four inputs each and in
Xilinx 4000-series the LUTs have five inputs each. The parameter “-k” used in many
technol ogy-mapping commands should specify number of inputsto one LUT.

iég"n Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se

6.1. Task 1 Making scripts for technology mapping

In this task you should prepare scripts for technology mapping. Make one script containing
technol ogy-mapping commands, which makes optimization with respect to area minimization
for mapping to Xilinx 3000-series. Make another script doing the same but for minimizing the
depth of the circuit. Copy those scripts and modify the copies to work for Xilinx 4000-series.
Y ou don't need to put the final commands “match_3k” and “match_4k” into the scripts. You
can write those commands in the SIS-prompt when you need them instead.

Fill in the scriptsin the “hand-in” form.

6.2. Task 2 Technology-mapping of multiplier

In this task you should use your multiplier from the previous lab and make technology
mapping in some different ways. In thislab you should alter the following parameters:

e You can either use technology-independent optimization before you make technology
mapping or you can skip technol ogy-independent optimization. When you are making
technol ogy-independent optimization in this task you should use “rugged-script”

e You can optimize for area or for depth. To do this you should use your scripts from
the previous task.

e You can technology-map for either Xilinx 3000-series or Xilinx 4000-series.

The alternatives enumerated above makes eight different combinations of optimizations.
Make those and fill in the required resultsin the “hand-in” form. There are also some
questions in the “hand-in” form you should answer.

6.3. Task 3 Technology-mapping of Gray-code converter

In this task you should use the “Gray-code to binary converter” you have made in the
previous lab. The task is to technology-map it so it fits into two CLBs in Xilinx 3000-series.
Do this and answer the questions in the “hand-in” form!

6.4. Task 4 Technology-mapping of a benchmark

In this task you should technology-map the benchmark “t481.pla’. Y ou should map it so that
it only requires five LUTsin Xilinx 3000-series. Thisisthe goal of thistask and you decide
what should be done to get there. Answer the questionsin the “hand-in"-form!

7. An example of Technology-mapping
7.1. Description of example
To describe an example of technology mapping, an FSM to control one traffic light is used.

Thistraffic-light controller is nothing that can be used in traffic rather it can be used to show a
traffic light fitting in afair. The controller is made as a Moore-machine.

-5-

iés* Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

The FSM hasthree inputs. The first input let the traffic-light run in normal modeif it's“0”,
and in amode with twinkle amber (amber = yellow) if itis“1”. In the norma mode the traffic
light isred, green or it is on its way between. If the second input is“1”, when the traffic light
isgreen, itisforced to red viaamber. If thethird input is“1”, when the traffic light isred, it is
forced to green viared_amber.

The outputs from the FSM are signals to the three lamps. It isin the order green, amber and
red, and “1” means on.

The state-diagram below shows the system.

00-

01-
amber
010
O —
twinkle_amber twinkle_dark
010 000

K> Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

A description of thisin kiss-format is shown below:

.start_kiss

.13

.0 3

00- green green 100
01- green amber 100
1-- green twinkle amber 100
0-- amber red 010
1-- amber twinkle dark 010
0-0 red red 001
0-1 red red_amber 001
1-- red twinkle amber 001
0-- red_ amber green 011
1-- red_ amber twinkle amber 011
0-- twinkle amber red 010
1-- twinkle amber twinkle dark 010
0-- twinkle dark amber 000
1-- twinkle dark twinkle amber 000
.end kiss

.end

Thisfileis available as “/home/beto/public/logic_synthesigtraf.kiss’ in the UNIX-system.

7.2. Some tips

It's good to use commands like “print_stats” and “print_level” to see what is happening
between the different steps in the optimization and mapping process. Also remember that
“write_blif” can give some useful information in some cases.

7.3. The example through SIS

First we make the technology independent optimization. (That is what the first |aboratory was
about.) We use “state minimize’, “state_assign” and then run “rugged-script”. We then get:

UC Berkeley SIS with UCLA FPGA Extension (compiled 2-Apr-98 at 11:09 PM)
sis> read kiss traf.kiss

.start_kiss

sis> state minimize

Running stamina, written by June Rho, University of Colorado at Boulder
Number of states in original machine : 6

Number of states in minimized machine : 5

sis> state_ assign

Running nova, written by Tiziano Villa, UC Berkeley

Warning: network ‘SISEAAa29918’, node "v0" does not fanout
Warning: network ‘SISEAAa29918’, node "v1" does not fanout
Warning: network ‘SISEARAa29918’, node "v2" does not fanout

sis> source rugged

sis> write blif

.model traf.kiss

.inputs IN 0 IN 1 IN 2
.outputs OUT_O0 OUT_1 OUT_2
.latch v6.0 LatchOut_v3 1
.latch v6.1 LatchOut v4 1

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

.latch v6.2 LatchOut_ v5 0

.start_kiss

.13

.0 3

.p 12

.8 5

.r S1

0-- S0 s2 010

1-- S0 s3 010

0-0 s2 s2 001

0-1 s2 S4 001

1-- S2 SO 001

0-- 83 s0 000

1-- 83 s0 000

0-- S84 s1 011

1-- S4 SO 011

00- S1 S1 100

01- S1 S0 100

1-- 81 S0 100

.end kiss

.latch order LatchOut v3 LatchOut v4 LatchOut v5
.code S0 000

.code S2 111

.code S3 001

.code S4 010

.code s1 110

.names LatchOut_ v3 LatchOut_ v5 OUT_ 0

10 1

.names LatchOut_v3 LatchOut_v5 OUT_1

00 1

.names OUT 0 LatchOut v4 OUT 2

011

.names v6.1 v6.2 LatchOut v5 v6.0

11- 1

1-0 1

.names IN 0 IN 1 OUT 1 OUT 2 LatchOut v5 v6.1
0-1-- 1

0--1- 1

00--0 1

.names IN 0 IN_2 LatchOut_v4 LatchOut_v5 vé6.2
--00 1

0011 1

.exdc

.inputs IN 0 IN 1 IN 2 LatchOut_v3 LatchOut_v4 LatchOut_v5
.outputs v6.0 v6.1 v6.2 OUT_0 OUT_ 1 OUT_ 2
.names LatchOut v3 LatchOut v4 LatchOut v5 v6.0
10- 1

011 1

.names LatchOut_v3 LatchOut_v4 LatchOut v5 v6.1
10- 1

011 1

.names LatchOut_ v3 LatchOut v4 LatchOut v5 v6.2
10- 1

011 1

.names LatchOut_v3 LatchOut_v4 LatchOut_v5 OUT_ 0
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT 1

-8-

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

10- 1
011 1
.names LatchOut_v3 LatchOut_v4 LatchOut_v5 OUT_ 2
10- 1
011 1
.end

The key-word “.exdc” means that the following blif-description is the don’t-care-set. The
description above is the optimized description of the function where don’t-cares are forced to
one and zero to make the function as small as possible.

7.3.1. Gate Decomposition

In the description of technology mapping from UCLA, it’s written that command
“tech_decomp” should be run before “dmig’-command is run. The parameter “-k 4” in the
“dmig”-command is chosen to 4 because the plan is to map this to an FPGA with 4-input
LUTs.

sis> tech_decomp -a 1000 -o 1000
sis> dmig -k 4

sis> write blif

.model traf.kiss

.inputs IN 0 IN 1 IN 2

.outputs OUT_O0 OUT_1 OUT_2
.latch v6.0 LatchOut_v3 1
.latch v6.1l LatchOut v4
.latch v6.2 LatchOut_ v5 0
.start_kiss

3

3

12

[

0G0 b

0-- S0 s2 010

1-- S0 s3 010

0-0 s2 S2 001

0-1 s2 S4 001

1-- S2 s0 001

0-- 83 S0 000

1-- 83 s0 000

0-- sS4 S1 011

1-- S4 SO 011

00- S1 S1 100

01- S1 sO 100

1-- 81 s0 100

.end kiss

.latch order LatchOut v3 LatchOut v4 LatchOut v5
.code S0 000

.code S2 111

.code S3 001

.code sS4 010

.code s1 110

.names LatchOut v3 LatchOut_ v5 OUT_ 0
10 1

.names LatchOut v3 LatchOut_v5 OUT 1

-9-

égﬁ‘n Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

00 1

.names OUT 0 LatchOut wv4 OUT 2

01 1

.names [21] [22] v6.0

1-1

-11

.names [25] [26] [27] vé6.1

1--1

-1- 1

--11

.names [23] [24] v6.2

1-1

-11

.names v6.1 LatchOut_v5 [21]

10 1

.names v6.1 v6.2 [22]

111

.names IN 0 IN_2 LatchOut_v4 LatchOut_v5 [23]
0011 1

.names LatchOut_v4 LatchOut_v5 [24]

00 1

.names IN 0 IN 1 LatchOut v5 [25]

000 1

.names IN 0 OUT 2 [26]

01 1

.names IN 0 OUT 1 [27]

011

.exdc

.inputs IN 0 IN 1 IN 2 LatchOut_v3 LatchOut_v4 LatchOut_v5
.outputs v6.0 v6.1 v6.2 OUT_0 OUT_ 1 OUT_2
.names LatchOut v3 LatchOut v4 LatchOut v5 v6.0
10- 1

011 1

.names LatchOut_v3 LatchOut_v4 LatchOut v5 v6.1
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 v6.2
10- 1

011 1

.names LatchOut_v3 LatchOut_v4 LatchOut_v5 OUT 0
10- 1

011 1

.names LatchOut_ v3 LatchOut_v4 LatchOut_v5 OUT 1
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT_ 2
10- 1

011 1

.end

-10-

K> Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se
7.3.2. LUT Mapping

When gate decomposition is done there are some commands to choose between, which map
the function to LUTs (Look Up Tables).

sis> dagmap -k 4

sis> write blif

.model traf.kiss

.inputs IN 0 IN 1 IN 2
.outputs OUT 0 OUT 1 OUT 2
.latch v6.0 LatchOut_v3 1
.latch v6.1l LatchOut_v4
.latch v6.2 LatchOut_ v5 0
.start_kiss

i3

.0 3

.p 12

.8 5

.r S1

0-- S0 S2 010

1-- S0 s3 010

0-0 s2 s2 001

0-1 Ss2 S4 001

1-- S2 SO 001

0-- S3 SO0 000

1-- 83 s0 000

0-- s4 s1 011

1-- sS4 SO 011

00- S1 S1 100

01- S1 SO 100

1-- s1 s0 100

.end kiss

.latch order LatchOut v3 LatchOut v4 LatchOut v5
.code S0 000

.code s2 111

.code S3 001

.code S4 010

.code s1 110

.names LatchOut v3 LatchOut_ v5 OUT_ 0

10 1

.names LatchOut_v3 LatchOut_v5 OUT_1

00 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT_ 2
01- 1

-11 1

.names [21] [22] v6.0

1-1

-11

.names [25] [26] [27] vé6.1

1--1

-1- 1

--11

.names IN 0 IN 2 LatchOut v4 LatchOut v5 v6.2
--00 1

0011 1

.names LatchOut_v5 [25] [26] [27] [21]

01-- 1

=)

-11 -

K> Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se

0-1- 1

0--11

.names v6.2 [25] [26] [27] [22]

11-- 1

1-1- 1

1--1 1

.names IN 0 IN 1 LatchOut v5 [25]

000 1

.names IN 0 LatchOut v3 LatchOut v4 LatchOut v5 [26]

001- 1

0-11 1

.names IN 0 LatchOut v3 LatchOut v5 [27]

000 1

.exdc

.inputs IN 0 IN 1 IN 2 LatchOut_v3 LatchOut_v4 LatchOut_v5
.outputs v6.0 v6.1 v6.2 OUT 0 OUT 1 OUT 2

.names LatchOut_ v3 LatchOut v4 LatchOut v5 v6.0
10- 1

011 1

.names LatchOut_v3 LatchOut_v4 LatchOut v5 v6.1
10- 1

011 1

.names LatchOut_v3 LatchOut_ v4 LatchOut_v5 v6.2
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT 0
10- 1

011 1

.names LatchOut_ v3 LatchOut_v4 LatchOut_v5 OUT 1
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT_ 2
10- 1

011 1

.end

7.3.3. Post-processing commands
The post-processing command “mpack” can for some cases merge two LUTsinto one LUT.

sis> mpack -k 4

sis> write blif

.model traf.kiss

.inputs IN 0 IN 1 IN 2
.outputs OUT 0 OUT 1 OUT 2
.latch v6.0 LatchOut_v3 1
.latch v6.1 LatchOut_v4
.latch v6.2 LatchOut_vb5 0
.start_kiss

.13

.0 3

.p 12

.s 5

.r S1

0-- S0 S2 010

1-- S0 S3 010

=)

-12 -

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

0-0 S2 S2 001

0-1 S2 S4 001

1-- S2 S0 001

0-- S3 S0 000

1-- S3 S0 000

0-- S4 S1 011

1-- S4 SO0 011

00- S1 S1 100

01- S1 SO 100

1-- S1 SO 100

.end kiss

.latch order LatchOut v3 LatchOut v4 LatchOut v5
.code SO0 000

.code S2 111

.code S3 001

.code sS4 010

.code s1 110

.names LatchOut_v3 LatchOut_v5 OUT_0

10 1

.names LatchOut_v3 LatchOut_v5 OUT_1

00 1

.names LatchOut v3 LatchOut v4 LatchOut v5 OUT_ 2
01- 1

-11 1

.names [21] [22] v6.0

1- 1

-1 1

.names [25] [26] [27] vé6.1

1--1

-1- 1

--11

.names IN 0 IN 2 LatchOut v4 LatchOut v5 v6.2
--00 1

0011 1

.names LatchOut_v5 [25] [26] [27] [21]

01-- 1

0-1- 1

0--11

.names v6.2 [25] [26] [27] [22]

11-- 1

1-1- 1

1--1 1

.names IN 0 IN 1 LatchOut v5 [25]

000 1

.names IN 0 LatchOut v3 LatchOut v4 LatchOut v5 [26]
001- 1

0-11 1

.names IN 0 LatchOut v3 LatchOut v5 [27]

000 1

.exdc

.inputs IN 0 IN 1 IN 2 LatchOut v3 LatchOut wv4 LatchOut v5
.outputs v6.0 v6.1 v6.2 OUT 0 OUT 1 OUT 2
.names LatchOut_v3 LatchOut v4 LatchOut_v5 v6.0
10- 1

011 1

.names LatchOut v3 LatchOut v4 LatchOut v5 vé6.1
10- 1

011 1

-13-

INGEMORSHOGSKOLAN

Logic optimisation using SIS

Tomas Bengtsson

Shashi Kumar

Tomas.Bengtsson(@ing.hj.se

Shashi.Kumar@ing.hj.se

.names
10- 1
011 1
.names
10- 1

LatchOut_ v3

LatchOut_v3

LatchOut_ v4 LatchOut_ v5

LatchOut_v4 LatchOut_v5

v6.2

OUT 0

011 1
.names
10- 1
011 1
.names
10- 1
011 1
.end

LatchOut_ v3 LatchOut v4 LatchOut v5 OUT 1

LatchOut_v3 LatchOut_v4 LatchOut_v5 OUT_2

7.3.4.
In our installation of SISt is possible to map to Xilinx 3000 and 4000 —series.

Programmable Logic Block Generation

sis> match 3k -v

##PI=3 #P0O=3 #LUT=11 #CLB=6 #LEVEL=3
#0001: (OUT 2 , v6.2)

#0002: (ouT 1 , [26])

#0003: (OUT O , [27])

#0004: (v6.1 , [21])

#0005: (v6.0 , [25])

#0006: ([22]) sis> match 3k -v

The argument “-v” makesit print the list about which LUTs should be in the same CLB.

8. Appendix

Appendix A
e e et +
| RASP SYN: LUT-Based FPGA Technology Mapping Package (Release B 1.0) |
| -- Synthesis Core of the UCLA RASP Systems |
e +
| Copyright (C) 1991-1997 the Regents of University of California |
e +

Authors: Eugene Ding, VLSI CAD Lab, UCLA CS Dept. <eugene@cs.ucla.edu> |

|

| Yean-Yow Hwang, VLSI CAD Lab, UCLA CS Dept.<yeanyow@cs.ucla.edus |
| Chang Wu, VLSI CAD Lab, UCLA CS Dept. <changwu@cs.ucla.edu> |
| Songjie Xu, VLSI CAD Lab, UCLA CS Dept. <sxu@cs.ucla.edu> |
| Prof. UCLA CS Dept. <cong@cs.ucla.edu> |

Project Director: Jason Cong,

This release includes the following mapping algorithms:

| |
| DAG Map version 1.0 |
| FlowMap version 2.1 |
| FlowMap-r version 2.0 |
| FlowSYN version 2.0 |
| CutMap version 1.2 |
| ZMap version 1.0 |
| TurboMap version 1.0

e e TP +

<0> ACKNOWLEDGEMENT

-14 -

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

The FlowMap and CutMap and TurboMap packages are integrated into the SIS
system and uses many of the routines provided by SIS. The SIS system was
developed in UC Berkeley Electronic Research Lab.

Please refer to "release.statement".

sis -- binary of SIS compiled with FlowMap and
CutMap packages.

doc -- this file.

release.statement -- to be read first.

rasp_syn -- a csh script of FPGA mapping

select -- mapping result selector

This release contains programs primarily developed by September 1997.
More functions will be added to future release when they are stablized.
It runs on Sun SPARCstation under SunOS 4.1.3 and Solaris.

Some commands are not included in the release due to nondisclosure
agreement.

RASP SYN package provides a complete solution to SRAM-based FPGA mapping
engine. The entire flow of RASP SYN is:

1. gate decomposition to get K-bounded circuit, where K is the
fanin limit of LUTs of the target architecture

2. generic LUT mapping

3. post-processing mainly for area reduction

4. architecture specific mapping.

RASP_SYN comes with a user-friendly csh script for the ease of use.
However, you can modify the script or write your own based on your
specific needs.

J. Cong, Y. Ding, "An Optimal Technology Mapping Algorithm for Delay
Optimization in Lookup-Table based FPGA Designs," IEEE Trans. on CAD,
Vol. 13, No. 1, Jan. 1994, pp. 1-12.

J. Cong, Y. Ding, "On Area/Depth Trade-off in LUT-Based FPGA Technology
Mapping," IEEE Trans. on VLSI Systems, Vol 2., No. 2, June 1994,
pp. 137-148.

J. Cong, Y. Ding, T. Gao, K. Chen, "LUT-Based FPGA Technology Mapping
under Arbitrary Net-Delay Models," Computers & Graphics,
Vol.18, No.4, 1994, 507-516.

J. Cong, Y. Ding, "Beyond the Combinatorial Limit in Depth Minimization
for LUT-Based FPGA Designs," Proc. 1993 IEEE/ACM Int’l Conf. on CAD,
Santa Clara, CA, Nov. 1993, pp. 110-114.

K.Chen, J.Cong, Y.Ding, A.Kahng, P.Trajmar, "DAG-MAP: Graph-Based

-15-

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

FPGA Technology Mapping for Delay Optimization," IEEE Design & Test
of Computers, Sept. 1992

J. Cong, J. Peck, Y. Ding, "RASP: A General Logic Synthesis System for
SRAM-based FPGAs," Proc. ACM 4th Int’l Symp. on FPGA, pp. 137-143, 1996

J. Cong, Y. Hwang, "Simultaneous Depth and Area Minimization in LUT-Based
FPGA Mapping," Proc. ACM 3rd Int’l Symp. on FPGA, Feb. 1995, pp. 68-74.

J. Cong, Y. Hwang, "Structural Gate Decomposition for Depth-Optimal
Technology Mapping in LUT-based FPGA Designs," Proc. ACM/IEEE 33rd
Design Automation Conf., pp. 726-729, 1996.

J. Cong, C. Wu, "An Improved Algorithm for Performance Optimal Technology
Mapping with Retiming in LUT-Based FPGA Design," Proc. IEEE Internal
Conference on Computer Design, pp. 572-578, 1996

Xilinx, FPGA Data Book, 1994

4.1 Running with a super script
Super Script of UCLA FPGA Mapping

Usage: rasp_syn circuit -sis path -k k -device xc3k/xc4k -algo algo -relax r
-objective area/delay/tradeoff/all

Rasp syn is a csh script for an easy usage of UCLA FPGA Mapping algorithms.
In default, the input is in EQN format with extension .eqn. The output is
an LUT network with/without matching information in EQN format as well.
Please keep the program "select" in the current directory.

To use other data formats as BLIF or SLIF which are supported by SIS of UCB,
please set FMT in rasp syn script to blif or slif and use .blif or .slif

as the name extension of the input file. The output format will be changed
automatically, except the CLB matching file format, which will be kept

in EQN format. For Xilinx XC3K/XC4K CLBs, the CLB clustering information
will be presented as:

#CLB_number: (lutl, lut2)
lutl =
lut2 =
There are two ways to run rasp_syn:

1. Running with single given mapping algorithm

The algorithm must be specified with option -algo algorithm. The target
is K-LUT. The output circuit is in circuit.k in EQN format.

2. Running with multiple algorithms
Rasp_syn can run all the built-in algorithms automatically and return
the best result (in terms of area or delay) or a set of results

based on area-delay tradeoff or all the results for you.

To run multiple algorithms, you simply do not specify any algorithm with
-algo option.

Options

-16-

K> Logic optimisation using SIS

INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se
Shashi Kumar Shashi.Kumar@ing.hj.se

-sis Specify the path of sis. The default is sis and the path
must be specified in the environment.

-k Used only in single algorithm mode. K is the input number
of LUTs. The output is in circuit.k.

-device Used only in multi-algorithm mode. This is the default mode.
The current supported devices are:
xc3k Xilinx XC3000 Family
xc4k Xilinx XC4000 Family

-algo Specify the mapping algorithm in single algorithm mode.

The current supported algorithms are:
flowmap: FlowMap

flowmap-r: FlowMap-r

flowsyn: FlowSYN

cutmap: CutMap

zZmap: ZMap for delay
zma : ZMap for area
-relax Used only in single algorithm mode with FlowMap-r.

R is the depth relaxation.

-objective Used only in multi-algorithm mode. The objective can be:
area: Area first. This is the default objective.
delay: Depth first
tradeoff: Area-delay tradeoff
all: All the results

4.2 Running SIS without the super script

SIS is a complete logic synthesis package. All of the following commands
have been built in SIS which can be run directly from SIS.

Commands provided by UCLA FPGA Mapping Package

1. Gate Decomposition Commands
* dmig [-k <K value>] [-f]
Decompose a simple gate network into a K-bounded network
(i.e. each gate has no more than K inputs), or
complex gates into K-bounded gates with -f option.
For obtaining a simple gate network, use sis command
"tech decomp -a 1000 -o 1000."
-k specifies max. gate input size K, with a default value 2.
-f decompose complex gates in the network

* dogma [-k <K value>]

Decompose a simple gate network into a 2-bounded network
such that flowmap, cutmap, or zmap can obtain a best (small) depth.

-k specifies the LUT input size K, with a default value 5.

2. LUT Mapping Commands
* dagmap [-k <K value>]

Map a K-bounded network into a K-LUT network of small depth

-17 -

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

(might not be optimal) .

-k specifies the LUT input size K, with a default value 5.

* flowmap [-k <K value>] [-r <R _value>] [-s <S value>]

Map a K-bounded network into a K-LUT network of optimal depth,

or within the optimal depth plus R.

Area can be further reduced by post-processing packing routines.

-k specifies the LUT input size K, with a default value 5.

-r specifies the relaxed depth value R.
If -r is not used, every node is at its optimal depth,
-r 0 will trade depth on non-critical paths for a smaller area
(the LUT network still has an optimal depth),
-r R will allow depth to increase by R (then dfmap is called to
reduce the area).

-s specifies the cone input size S for which resynthesis of cones
are performed for a smaller LUT network depth.

* dfmap [-k <K values>]
Map a K-bounded network into a K-LUT network of optimal area
WITHOUT any node duplication.
It is used after flowmap -r and mffc shrink, and is followed
by a LUT packing procedure. For example, we use dfmap in

"flowmap -k 5 -r 1; mffc shrink -k 5; dfmap -k 5; greedy pack -k 5"

-k specifies the LUT input size K, with a default value 5.

* cutmap [-k <K value>] [-x]
Map a K-bounded network into a K-LUT network of optimal depth
with simultaneous area minimization.
Area can be further reduced by post-processing packing routines.
-k specifies the LUT input size K, with a default value 5.
-x specifies depth relaxation on non-critical paths.

* zmap [-k <K value>] [-c]
Map a K-bounded network into a K-LUT network of optimal depth
with simultaneous area minimization (cut enumeration approach).
Area can be further reduced by post-processing packing routines.
-k specifies the LUT input size K, with a default value 5.
-c¢ will minimize area only with no bound on depth

* turbomap [-k <K value>] [-c <clock value>] [-a <area reduction>]

Map a K-bounded network into a K-LUT network with the minimum clock
period. Area can be further reduced by post-processing packing routines.

-k specifies the LUT input size K,
default value: 5.

-c specifies an upper-bound on the clock period,
-1: no upper-bound, (default)

-18-

K> Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

-a specifies whether to perform clock period bounded area minimization
1: allow label relaxation, 2: no label relaxation
default: no area reduction

3. Post-Processing Commands

* mpack [-k <K value>] [-m] [-p | -9]
Reduce the number of nodes in the K-bounded network through
predecessor packing and/or gate decomposition.
(Each node can be regarded as a LUT).
-k specifies the LUT input size K, with a default value 5.
-m enable collapsing into multiple fanouts (for better results)
-p predecessor packing only, no gate decomposition.
-g gate decomposition only, no predecessor packing.

* greedy pack [-k <K value>] [-m] [-p | -g]
Same as mpack, but with a fast graph matching heuristics.

* mppack = mpack -p

* greedy ppack = greedy pack -p

* flowpack [-k <K_value>]
Pack LUTs together when possible for reducing area.

-k specifies the LUT input size K, with a default value 5.

4. Programmable Logic Block Generation Commands

* match 3k [{ -v | -f <outfile> } [-e]]
Pair up 4-LUTs for XC3000 CLBs and print pairing results.
(Two 4-LUTs with 3 common inputs can be put in one CLB.)
The network is not changed.
-v print the CLB output(s) to standard output

-f print the CLB output(s) to <outfile>

-e also print LUT network functions in EQN format

* match 4k [{ -v | -f <outfile> }] [-h <thresholds>]

Group up LUTs for XC4000 CLBs and print grouping results.
(If 5-LUT can be decomposed properly, it can be put into one
CLB with an additional 4-LUT.)

The network is not changed.

-19-

égﬁ‘n Logic optimisation using SIS
INGENJORSHOCSKOLAN Tomas Bengtsson Tomas.Bengtsson(@ing.hj.se

Shashi Kumar Shashi.Kumar@ing.hj.se

-v print LUT grouping results and LUT network functions to
standard output

-f print LUT grouping results and LUT network functions to <outfiles

-h employ fast 4-LUT pairing heuristics when the number of
4-LUTs is more than <threshold> in the LUT network

5. Utility Commands
* mffc shrink [-k <K value>]

Collapse MFFCs (with no more than K inputs) into a single node.
This is a pre-processing step of DF-Map for improving dfmap results.

-k specifies MFFC input size K, with a default value 5.
* f1 nstatus [-s]
Print network information (number of PIs, POs, levels, nodes, etc.).
-s also print node fanin/fanout distributions
* prn [-m]
Print network information (number of PIs, POs, levels, nodes, etc.).

-m also print statistics on the MFFCs of the network

-20-

