LECTURE 6:
¥ - State machines

BNt animation: please viewshow

Gated-Clock SR Flip-Flop (Latch Enable)

Q <= (S NAND LE) NAND NQ;
S
NQ <= (R NAND LE) NAND Q;
LE— .
Synchronous terminology:
- Set and Reset

Asynchronous terminology:
CLR Preset and Clear

Latches require that during the gated-clock the data
must also be stable (i.e. S and R) at the same time

Suppose each gate was 5ns: how long does the clock
have to be enabled to latch the data?

Answer: 15ns

CWRU EECS 317

Structural SR Flip-Flop (Latch)
&

|
o)

HOHOU))Z>

~ ~ O ol

ENTITY Latch IS
PORT(R, S: IN std_logic; Q, NQ: OUT std_logic);
END ENTITY;

ARCHITECTURE latch_arch OF Latch IS
BEGIN

Q <= R NAND NQ;

NQ <=S NAND Q;
END ARCHITECTURE;

CWRU EECS 317

Inferring Behavioral Latches: Asynchronous
Sensitivity list of signals:

& NAND
Ques

U
1
0
Q

n

PROCESS (R, S) BEGIN

IF R="0" THEN

Every time a change of
state or event occurs on
these signals this
process will be called

ch OF Latch IS | Sequential
/ Statements

Q<="1" NQ<='07;

ELSIF S='0" THEN

Q <="0'; NQ<="1;

END IF;
END PROCESS;
END ARCHITECTURE;

CWRU EECS 317

Gated-Clock SR Flip-Flop (Latch Enable)

Vi% S —_—
— . Q
LE—
— ' Q
R

ARCHITECTURE Latch_arch OF GC_Latch IS BEGIN
PROCESS (R, S, LE) BEGIN
IF LE="1" THEN
IF R="'0" THEN
Q <="1"; NQ<='0’;
ELSIF S='0" THEN
Q <='0"; NQ<='1;
END IF;
END IF;
END PROCESS;
END ARCHITECTURE; owRu Ecs 317

Rising-Edge Flip-flop

&

s

Clk

) == I when TClk

D-Twpe .

Flip Flop

Clk

changes from "0° to

Dashed wertical lines indicate wrhen an
input to the flip flop has changed.

}

f

1l = 3

L | ™

CWRU EECS 317

Rising-Edge Fli

0-flop logic diagram

&

E o Do not
L~ [P Bt want to
T _”"-ﬂc-ha‘# code this

A up as
e . _ | _ |combin-

Cll=1 g © | atorial

[% logic!

—) > |Too
— much
1; :}::—Ei'i_-_;l. WOI’k'
el — T

Inferring D-Flip Flops: Synchronous

&

ARCHITECTURE Dff _arch OF Dff IS
BEGIN

PROCESS (Clock) BEGIN

Notice the Process
does not contain D:
PROCESS(Clock, D)

Sensitivity lists
contain signals used
In conditionals (i.e. IF)

IF Clock’EVENT AND Clock='1" THEN

Q<=D;
END IF;
END PROCESS;
END ARCHITECTURE;

Clock’EVENT is what
distinguishes a D-
FlipFlip from a Latch

CWRU EECS 317

Inferring D-Flip Flops: rising _edge
7 =

I
L;E}

ARCHITECTURE Dff arch OF Dff IS BEGIN
PROCESS (Clock) BEGIN
IF Clock’EVENT AND Clock='1" THEN

Q<=D; ~ Alternate and

END IF; | more readable way is
END PROCESS: to use the

END ARCHITECTURE;

rising_edge function

ARCHITECTURE dff _arch OF IS BEGIN
PROCESS (Clock) BE
IF rising _edge(Clock) THEN
Q<=D;
END IF;
END PROCESS;
END ARCHITECTURE;

CWRU EECS 317

Inferring D-Flip Flops: Asynchronous Reset
I ———

o)

ARCHITECTURE dff reset arch OF dff reset IS BEGIN
PROCESS (Clock, Reset) BEGIN

IF Reset= ‘1" THEN -- Asynchronous Reset
Q <: (O’

ELSIF rising_edge(Clock) THEN --Synchronous
Q<=D;
END IF;
END PROCESS;

END ARCHITECTURE;

CWRU EECS 317

Inferring D-Flip Flops: Synchronous Reset

i ——¢
= (L —

%)

A ——
PROCESS (Clock, Reset) BEGIN | D
IF rising_edge(Clock) THEN
IF Reset='1" THEN
Q<=0

Synchronous Reset

Synchronous FF

ELSE
Q<=D;
END IF;
END IF;
END PROCESS;

PROCESS (Clock, Reset) BEGIN Asynchronous Reset
IF Reset='1" THEN
Q<=0
ELSIF rising _edge(Clock) THEN
Q<=D;
END IF;
END PROCESS;

Synchronous FF

CWRU EECS 317

D-Flip Flops: Asynchronous Reset & Preset

o)

e) o
L — -.-'i

T
R ———
e =

PROCESS (Clock, Reset, Preset) BEGIN

IF Reset='1" THEN --highest priority
Q<="0%

ELSIF Preset="1" THEN
Q<="0%

ELSIF rising_edge(Clock) THEN
Q<=D;

END IF;

END PROCESS;

CWRU EECS 317

VHDL clock behavioral component

» , =
ENTITY clock driver IS

GENERIC (Speed: TIME :=5 ns);
PORT (Clk: OUT std_logic);

]
L;E}

END;

ARCHITECTURE clock driver arch OF clock driver IS
SIGNAL Clock: std_logic :=*0’;

BEGIN
Clk <= Clk XOR ‘1’ after Speed,
Clock <= Clk;

END ARCHITECTURE;

CONFIGURATION clock driver cfg OF clock driver IS
FOR clock driver _arch END FOR,;
END CONFIGURATION;

317

‘S ynchronous Sequential Circuit I

T
inouts : Combinational » Oulpuls
Logic
—_—
. Q
Current Next
State Q1 D1 State
Fa
32 D2
Fa!
e, Memory element:

CLK

L atch or Flip-Flop

Issues: Specification, design, clocking and iming

‘Abstracﬁﬂn: Finite State Machine I

* A Finite State Machine (FSM) has:
— K states, 5 = {5, S5, ..., Sy}, Initial state s,
— N inputs, | = {i;, I, ..., Iy}
— M outputs, O = {0, 05, ..., Op}

— Transition function T(S, 1) mapping each
current state and input to a next state

— Qutput function O(S) mapping each current
state to an output

+ Given a sequence of inputs the FSM produces
a sequence of outputs which is dependent on
s, T(S, 1) and O(S)

‘FSM Representations I

State Transition Graph State Transition Table
Initial state 00 T(S, 1)
0 (S}
1
i, ﬂ\
10 1 s, | 10
1 1
S; | 11
P12
nputs: ¢ T @
Outputs: 00

‘MGGFE achines I

+ So far we considered Moore machines where
the output O is a function of only the current

state Q1

| o

0 <~ QI T

G|

Q

3
£

V
Y-

 Moore FSM State Transition Graph

0 1 1
0 1 0

18

‘Simp;'e Design Example I

+ Design a FSM that outputs a1 if and only if the
number of 1°s in the input sequence is odd

Iy

G |
04 Gl
@ D
ENTITY FSM_Parity IS

PORT (i1: IN std_logic;
o1l: OUT std logic;
CLK: IN std_logic; --Clock
RST: IN std logic --Reset

); END;

— —State Encoding is sequentially done by VHDL
TYPE FSMStates IS (s1, s2); --s1=0, s2=1
SIGNAL State, NextState: FSMStates;

« State Encoding: Choose a unique binary code
for each s; so the combinational logic can be
specified

— Choose s, =0 and s,=1
— Choose s, =1 ands,=10

— —The non-sequential case requires the following
ATTRIBUTE FSMencode: string;
ATTRIBUTE FSMencode of FSMStates: TYPE IS “1 0”;

‘Simp;'e Design Example I

PROCESS (State, i1) BEGIN
CASE State IS
WHEN s1 =>if 11="1" then NextState <= s2;
else NextState <=s1: end If;
WHEN s? =>if 11="1" then NextState <=s1;
else NextState <=s2: end Iif;

WHEN OTHERS => NextState <= NextState;
END CASE;
END PROCESS;
Evean O d

FSM Controller: Current State Process
% —_—

|
(2

ARCHITECTURE FSM_Parity _arch OF FSM_Parity IS
TYPE FSMStates IS (s1, s2);
SIGNAL State, NextState: FSMStates;

BEGIN

PROCESS (State, i1) BEGIN
CASE State IS
WHEN s1 => if 11="1"then NextState <=s2;
else NextState <=s1; end if;
WHEN s2 => if 11="1" then NextState <=s1;
else NextState <=s2; end if;
WHEN OTHERS => NextState <= NextState;
END CASE:;
END PROCESS:;

WITH State SELECT
ol<= ‘0" WHEN s1,
‘1" WHEN s2,
‘1" WHEN OTHERS; --X,L,W,H, U

CWRU EECS 317

Alternative: less coding

7

= "
e
o

%)

ARCHITECTURE FSM_Parity _arch OF FSM_Parity IS
TYPE FSMStates IS (s1, s2);
SIGNAL State, NextState: FSMStates;

BEGIN

PROCESS (State, i1) BEGIN
CASE State IS

Important Note:
every input to
the state
machine must be
In the PROCESS
sensitivity list

WHEN s1 => if i11="1"then NextState <=s2;
else NextState <=s1;
end if;

Important
Note: every
WHEN must

0l <= 0,4
WHEN s2 => if 11="1" then
else Nex
end if;
0l <= ‘1"
WHEN OTHERS =>

0l <= "1'; NextState <= NextState; | assignment

END CASE;
END PROCESS;

assign the
same set of
signals: i.e.
NextState
and ol.if you
miss one

latches will
S h OW u Q\}VRU EECS 317

FSM controller: NextState Process
% —_—

I
L;E}

PROCESS (CLK, RST) BEGIN
IF RST="1' THEN -- Asynchronous Reset
State <=s1,;

ELSIF rising _edge(CLK) THEN
State <= NextState;
END IF;
END PROCESS;

END ARCHITECTURE;

CONFIGURATION FSM_Parity cfg OF FSM_Parity IS
FOR FSM_Parity _arch
END FOR,;

END CONFIGURATION;

CWRU EECS 317

‘Lﬂgi{: Implementations Synthesis I

Chooses,=0ands,=1

I1Q D Q 04 i1ﬁ
| 000
Gl s0ls |GU[o]0 o —
01 |1 111 —2 1,
11 |0 A
Chooses,=Tand s, =10
Iy, 3| D i
01 |7 @ 19 '1_\1D_‘
1 7
11 |0 110 n1—oQ— o
00 |0 0l1 — 1y
10 |1 &

‘Cﬂke Machine Example I

Coke costs $.10

Only nickels and dimes accepted
FSM inputs:

— 5! Nickel

—10: Dime

— Coke: Give me a coke

— Return: Give me my money bhack
FSM outputs:

— Drop: Drop a coke

— Ret5: Return $.05

— Ret10: Return $.10

‘Cﬂke Machine State Diagram I

Assumption: At most one input among Coke, 5, 10,
and Retum is assered

* represents all unspecified transitions from state

s Omn
5 5 63) Coke

* *

&

Does this work?

10

‘Cﬂke Machine Diagram - 1l I

Ret10 @{ Retum) Ret10

After Retum input, any input in the next cycle is ignored! 11

Assignment #6
7 ——

I
L;E}

a) Write the VHDL synchronous code (no latches!) and test
bench for the coke Il machine. Note: the dc_shell synthesis
analyze command will tell you if you inferred latches. Hand
code and simulation using the Unix script command.

b) Synthesize the your design and hand in the logic diagram,
Unix script include cell, area, timing report.

CWRU EECS 317

