
CWRU EECS 317

EECS 317 Computer DesignEECS 317 Computer Design

LECTURE 6:
 State machines

LECTURE 6:
 State machines

Instructor: Francis G. Wolff
wolff@eecs.cwru.edu
Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

CWRU EECS 317

Gated-Clock SR Flip-Flop (Latch Enable)

S

R

Q

Q

LE

Q <= (S NAND LE) NAND NQ;

Asynchronous terminology:
 Preset and Clear

Synchronous terminology:
 Set and Reset

NQ <= (R NAND LE) NAND Q;

CLR

PS

Suppose each gate was 5ns: how long does the clock
have to be enabled to latch the data?

Answer: 15ns

Latches require that during the gated-clock the data
must also be stable (i.e. S and R) at the same time

CWRU EECS 317

Structural SR Flip-Flop (Latch)

 NAND
R S Qn+1

0 0 U
0 1 1
1 0 0
1 1 Qn

R

S

Q

Q

ENTITY Latch IS
PORT(R, S: IN std_logic; Q, NQ: OUT std_logic);

END ENTITY;

ARCHITECTURE latch_arch OF Latch IS
BEGIN

Q <= R NAND NQ;
NQ <= S NAND Q;

END ARCHITECTURE;

CWRU EECS 317

Inferring Behavioral Latches: Asynchronous

ARCHITECTURE Latch2_arch OF Latch IS
BEGIN

PROCESS (R, S) BEGIN
IF R= ‘0’ THEN

Q <= ‘1’; NQ<=‘0’;
ELSIF S=‘0’ THEN

Q <= ‘0’; NQ<=‘1’;
END IF;

END PROCESS;
END ARCHITECTURE;

 NAND
R S Qn+1

0 0 U
0 1 1
1 0 0
1 1 Qn

R

S

Q

Q

Sensitivity list of signals:
Every time a change of
state or event occurs on
these signals this
process will be called

Sensitivity list of signals:
Every time a change of
state or event occurs on
these signals this
process will be called

Sequential
Statements

Sequential
Statements

CWRU EECS 317

Gated-Clock SR Flip-Flop (Latch Enable)

S

R

Q

Q

LE

ARCHITECTURE Latch_arch OF GC_Latch IS BEGIN
PROCESS (R, S, LE) BEGIN

IF LE=‘1’ THEN
IF R= ‘0’ THEN

Q <= ‘1’; NQ<=‘0’;
ELSIF S=‘0’ THEN

Q <= ‘0’; NQ<=‘1’;
END IF;

END IF;
END PROCESS;

END ARCHITECTURE;

CWRU EECS 317

Rising-Edge Flip-flop

CWRU EECS 317

Rising-Edge Flip-flop logic diagram

Do not
want to
code this
up as
combin-
atorial
logic!

Too
much
work!

Do not
want to
code this
up as
combin-
atorial
logic!

Too
much
work!

CWRU EECS 317

Inferring D-Flip Flops: Synchronous

ARCHITECTURE Dff_arch OF Dff IS
BEGIN

PROCESS (Clock) BEGIN
IF Clock’EVENT AND Clock=‘1’ THEN

Q <= D;
END IF;

END PROCESS;
END ARCHITECTURE;

Sensitivity lists
contain signals used
in conditionals (i.e. IF)

Sensitivity lists
contain signals used
in conditionals (i.e. IF)

Notice the Process
does not contain D:
PROCESS(Clock, D)

Notice the Process
does not contain D:
PROCESS(Clock, D)

Clock’EVENT is what
distinguishes a D-
FlipFlip from a Latch

Clock’EVENT is what
distinguishes a D-
FlipFlip from a Latch

CWRU EECS 317

Inferring D-Flip Flops: rising_edge

ARCHITECTURE Dff_arch OF Dff IS BEGIN
PROCESS (Clock) BEGIN

IF Clock’EVENT AND Clock=‘1’ THEN
Q <= D;

END IF;
END PROCESS;

END ARCHITECTURE;

ARCHITECTURE dff_arch OF dff IS BEGIN
PROCESS (Clock) BEGIN

IF rising_edge(Clock) THEN
Q <= D;

END IF;
END PROCESS;

END ARCHITECTURE;

Alternate and
more readable way is
to use the
rising_edge function

Alternate and
more readable way is
to use the
rising_edge function

CWRU EECS 317

Inferring D-Flip Flops: Asynchronous Reset

ARCHITECTURE dff_reset_arch OF dff_reset IS BEGIN

PROCESS (Clock, Reset) BEGIN

IF Reset= ‘1’ THEN -- Asynchronous Reset
Q <= ‘0’

ELSIF rising_edge(Clock) THEN --Synchronous
Q <= D;

END IF;
END PROCESS;

END ARCHITECTURE;

CWRU EECS 317

Inferring D-Flip Flops: Synchronous Reset

PROCESS (Clock, Reset) BEGIN
IF rising_edge(Clock) THEN

 IF Reset=‘1’ THEN
Q <= ‘0’

ELSE
Q <= D;

END IF;
END IF;

END PROCESS;

PROCESS (Clock, Reset) BEGIN
IF rising_edge(Clock) THEN

 IF Reset=‘1’ THEN
Q <= ‘0’

ELSE
Q <= D;

END IF;
END IF;

END PROCESS;

PROCESS (Clock, Reset) BEGIN
IF Reset=‘1’ THEN

Q <= ‘0’
ELSIF rising_edge(Clock) THEN

Q <= D;
END IF;

END PROCESS;

PROCESS (Clock, Reset) BEGIN
IF Reset=‘1’ THEN

Q <= ‘0’
ELSIF rising_edge(Clock) THEN

Q <= D;
END IF;

END PROCESS;

Synchronous Reset

Synchronous FF

Synchronous Reset

Synchronous FF

Asynchronous Reset

Synchronous FF

Asynchronous Reset

Synchronous FF

CWRU EECS 317

D-Flip Flops: Asynchronous Reset & Preset

PROCESS (Clock, Reset, Preset) BEGIN
IF Reset=‘1’ THEN --highest priority

Q <= ‘0’;
ELSIF Preset=‘1’ THEN

 Q <= ‘0’;
ELSIF rising_edge(Clock) THEN

Q <= D;
END IF;

END PROCESS;

PROCESS (Clock, Reset, Preset) BEGIN
IF Reset=‘1’ THEN --highest priority

Q <= ‘0’;
ELSIF Preset=‘1’ THEN

 Q <= ‘0’;
ELSIF rising_edge(Clock) THEN

Q <= D;
END IF;

END PROCESS;

CWRU EECS 317

VHDL clock behavioral component

ENTITY clock_driver IS

GENERIC (Speed: TIME := 5 ns);

PORT (Clk: OUT std_logic);
END;

ENTITY clock_driver IS

GENERIC (Speed: TIME := 5 ns);

PORT (Clk: OUT std_logic);
END;

ARCHITECTURE clock_driver_arch OF clock_driver IS

SIGNAL Clock: std_logic := ‘0’;

BEGIN

Clk <= Clk XOR ‘1’ after Speed;

Clock <= Clk;

END ARCHITECTURE;

CONFIGURATION clock_driver_cfg OF clock_driver IS
FOR clock_driver_arch END FOR;

END CONFIGURATION;

ARCHITECTURE clock_driver_arch OF clock_driver IS

SIGNAL Clock: std_logic := ‘0’;

BEGIN

Clk <= Clk XOR ‘1’ after Speed;

Clock <= Clk;

END ARCHITECTURE;

CONFIGURATION clock_driver_cfg OF clock_driver IS
FOR clock_driver_arch END FOR;

END CONFIGURATION;

CWRU EECS 317

Synchronous Sequential Circuit

CWRU EECS 317

Abstraction: Finite State Machine

CWRU EECS 317

FSM Representations

CWRU EECS 317

Moore Machines

CWRU EECS 317

Simple Design Example

 ENTITY FSM_Parity IS
PORT (i1: IN std_logic;

 o1: OUT std_logic;
 CLK: IN std_logic; --Clock
 RST: IN std_logic --Reset

); END;

CWRU EECS 317

State Encoding– –State Encoding is sequentially done by VHDL
TYPE FSMStates IS (s1, s2); --s1=0, s2=1

 SIGNAL State, NextState: FSMStates;

– –The non-sequential case requires the following
 ATTRIBUTE FSMencode: string;
 ATTRIBUTE FSMencode of FSMStates: TYPE IS “1 0”;

CWRU EECS 317

Simple Design Example

PROCESS (State, i1) BEGIN
 CASE State IS

WHEN s1 =>if i1=‘1’ then NextState <= s2;
 else NextState <= s1; end if;

 WHEN s2 =>if i1=‘1’ then NextState <= s1;
 else NextState <= s2; end if;

WHEN OTHERS => NextState <= NextState;
 END CASE;
 END PROCESS;

CWRU EECS 317

FSM Controller: Current State Process

ARCHITECTURE FSM_Parity_arch OF FSM_Parity IS
 TYPE FSMStates IS (s1, s2);
 SIGNAL State, NextState: FSMStates;
BEGIN

 PROCESS (State, i1) BEGIN
 CASE State IS

WHEN s1 => if i1=‘1’ then NextState <= s2;
 else NextState <= s1; end if;

 WHEN s2 => if i1=‘1’ then NextState <= s1;
 else NextState <= s2; end if;

WHEN OTHERS => NextState <= NextState;
 END CASE;
 END PROCESS;

 WITH State SELECT
o1 <= ‘0’ WHEN s1,

‘1’ WHEN s2,
‘1’ WHEN OTHERS; - - X, L, W, H, U

CWRU EECS 317

Alternative: less coding

ARCHITECTURE FSM_Parity_arch OF FSM_Parity IS
 TYPE FSMStates IS (s1, s2);
 SIGNAL State, NextState: FSMStates;
BEGIN

 PROCESS (State, i1) BEGIN
 CASE State IS

WHEN s1 => if i1=‘1’ then NextState <= s2;
 else NextState <= s1;

end if;
o1 <= ‘0’;

 WHEN s2 => if i1=‘1’ then NextState <= s1;
 else NextState <= s2;

end if;
o1 <= ‘1’;

WHEN OTHERS =>
o1 <= ‘1’; NextState <= NextState;

 END CASE;
 END PROCESS;

Important Note:
every input to
the state
machine must be
in the PROCESS
sensitivity list

Important
Note: every
WHEN must
assign the
same set of
signals: i.e.
NextState
and o1. if you
miss one
assignment
latches will
show up!

CWRU EECS 317

FSM controller: NextState Process

 PROCESS (CLK, RST) BEGIN
 IF RST='1' THEN -- Asynchronous Reset
 State <= s1;

 ELSIF rising_edge(CLK) THEN
 State <= NextState;
 END IF;
 END PROCESS;

END ARCHITECTURE;

CONFIGURATION FSM_Parity_cfg OF FSM_Parity IS
FOR FSM_Parity_arch
END FOR;

END CONFIGURATION;

CWRU EECS 317

Logic Implementations
Synthesis

CWRU EECS 317

Coke Machine Example

CWRU EECS 317

Coke Machine State Diagram

CWRU EECS 317

Coke Machine Diagram II

CWRU EECS 317

Assignment #6

a) Write the VHDL synchronous code (no latches!) and test
bench for the coke II machine. Note: the dc_shell synthesis
analyze command will tell you if you inferred latches. Hand
code and simulation using the Unix script command.

b) Synthesize the your design and hand in the logic diagram,
Unix script include cell, area, timing report.

