
1

EECS 322 Test 5 sample Monday May 1, 2000

Name:

Problem 1 (20%). Given the following direct-mapped cache architecture:
All instructions use byte addresses. The address bus is 8 bits. A word size is 16 bits.
Total data cache size 4 words.

1a. (2%) How many bits is the index?
= log2 cache size in words = log2 4 = 2

1b. (2%) How many bits is the byte offset?
= log2 number of bytes per word = log2 word size/8 = log2 16/8 = log2 2 = 1

1c. (2%) How many bits is the tag size?
= address size – index size – byte offset size = 8 – 2 – 1 = 5

1d. (14%) For the following instruction sequence, fill in the access bits to the data cache
tag index byte offset instruction

00100 00 0 lw $1, 32($0)

00100 01 0 lw $2, 34($0)

add $3, $1, $2

00101 10 0 sw $3, 44($0)

00001 10 0 lw $4, 12($0)

00101 00 1 lbu $5, 41($0)

beq $1, $2, 34($0)

Problem 2 (10%). Given the following 2-way set associative cache architecture:
All instructions use byte addresses. The address bus is 8 bits. A word size is 16 bits.
Total data cache size 4 words.

2a. (2%) How many bits is the index?
= log2 (cache size in words / N-way) = log2 (4/2) = log2 2= 1

2b. (2%) How many bits is the byte offset?
= log2 number of bytes per word = log2 word size/8 = log2 16/8 = log2 2 = 1

2c. (2%) How many bits is the tag size?
= address size – index size – byte offset size = 8 – 1 – 1 = 6

2d. (4%) For the following instruction sequence, fill in the access bits to the data cache
tag index byte offset instruction
001000 0 0 lw $1, 32($0)

001000 0 1 lbu $2, 33($0)

Does not access data
memory. Therefore
does not access the
data cache!

2

Problem 3. (15%) For the following instruction sequence fill in the direct-mapped cache
The word size is 16 bits.
Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=$3=0x1776; Memory[20]=0x1914;

3a. (5%) Fill in the miss cache column.
tag index byte offset instruction Valid or Tag

Cache Miss?
000 00 0 lw $1, 0($0) yes - valid
000 01 0 lw $2, 2($0) yes – valid
010 00 0 sw $3, 16($0)
010 10 1 lbu $5, 21($0) yes
010 10 0 lw $6, 20($0)

3b. (10%) The final state of the direct mapped data cache is:
index valid tag data
00 N→→→→Y 000→→→→010 0x1066→→→→0x1776

01 N→→→→Y 000 0x1453

10 N→→→→Y 010 0x1914

11 N

Problem 4. (15%) For the following instruction sequence fill in the 2-way set associative LRU cache
The word size is 16 bits.
Memory[0]=0x1066; Memory[2]=0x1453; Memory[16]=$3=0x1776; Memory[20]=0x1914;

4a. (5%) Fill in the miss cache column.
tag index byte offset instruction Valid or tag

Cache Miss?
000 0 0 lw $1, 0($0) yes
100 0 0 sw $3, 16($0)
000 0 1 lbu $5, 1($0)
101 0 0 lw $6, 20($0) yes – flush oldest reference
000 1 0 lw $1, 2($0) yes

4b. (10%) The final state of the 2-way set associative LRU data cache is:
index valid tag data

N→→→→Y 000 0x1066
(accessed by lw and lbu)

0

N→→→→Y 100→→→→101 0x1776→→→→0x1914

N→→→→Y 000 0x14531

N

A store never creates a
cache miss! Cache
misses are a property of
reads

Load byte must first
read the word from
memory (20) and then
separates out the byte.

3

Problem 5. (10%) Given a 1-word cache entry block size and one word wide memory bus
organization (figure 7.13a, page 561), and the following access times:

1 clock cycle to send the address,
8 clock cycles to read access DRAM, 16 clock cycles to write to DRAM
1 clock cycle to to send a word

5a. (5%) What is the miss penalty for a write-through direct mapped cache?
The miss penalty only include data reads not writes, since write-through is handled on

the store instruction.
Miss penalty = (1 send address) + (8 clocks to read) + (1 send word) = 10 clock cycles

5b. (5%) What is the miss penalty for a write-back direct mapped cache?
This miss penalty includes only data reads BUT on write back the cache entry may

contain a block not previously written out before a new entry can be read in (page 554).

Miss penalty = (1 send address) +(1 send word) + 1××××(16 clocks to write)
+ (1 send address) + (8 clocks to read) + (1 clock to send word) = 28 clocks

Problem 6 (20%). Given the following virtual memory architecture:
All instructions use byte addresses. The virtual address bus is 16 bits. A word is 16 bits.
Total page size 8 bytes. The real memory address bus is 16 bits.

6a. (2%) How many bits is the page offset?
= log2 number of bytes per page = log2 8 = log2 2

3 = 3
6b. (2%) How many bits is the physical page number size?

= virtual address bit size – page offset bit size = 16 – 3 = 13
6c. (2%) How many page table entries?

= virtual address size/page size = 216 / 23 = 213

6d. (2%) How large is the page table?
= #entries ×××× (bytes per entry to hold the real memory address)
= 213 ×××× 21 = 214 bytes = 16,384 bytes (i.e. a quarter the size of memory!)

6e. (12%) For the following instruction sequence, fill in the data access bits to the page table
virtual page number page offset instruction
0000 0000 00100 000 lw $1, 32($0)

0000 0000 00100 010 lw $2, 34($0)

0000 0000 00101 001 lbu $5, 41($0)

Problem 7. (10%) Assume 2K real memory, LRU, a page size of 1K and no pages loaded.
Fill in the page fault columns

instruction Page
fault?

Flush which page? Write flushed
page to disk?

Load what new
page

lw $1, 32($0) yes 0..1023
lw $2, 34($0) no
lbu $5, 41($0) no
sw $6, 1100($0) yes 1024..2047
lw $7, 2000($0) no
lw $1, 4100($0) yes 0..1023 (oldest) No – only lw’s 4096..5119
lw $2, 32($0) yes 1024..2047 (oldest) Yes – had a sw 0..1023

	Test 5 sample
	Monday May 1, 2000

