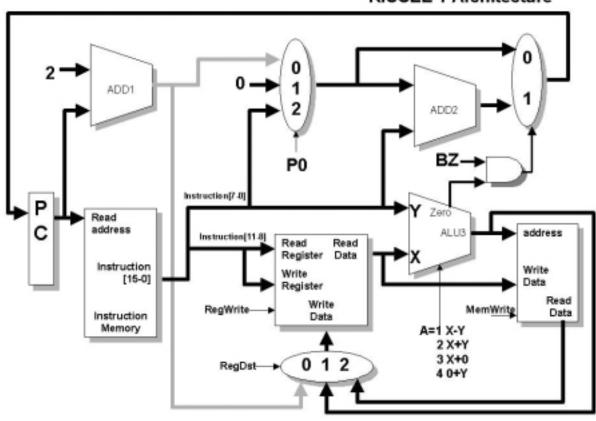
Name:

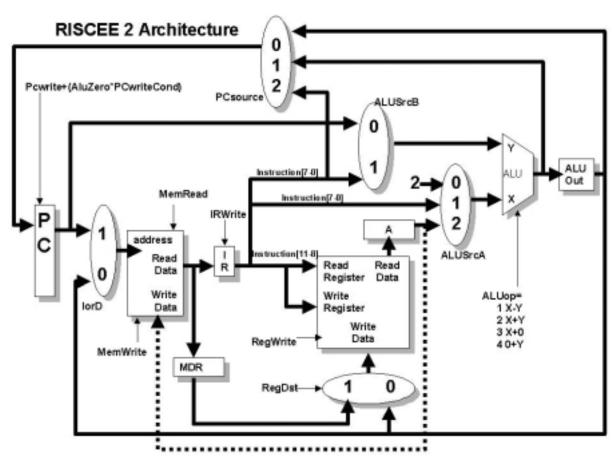
Problem 1 (50%): A group of EECS students have decided to compete with Intel Corporation in the microcontroller market. Their first prototype called the RISCEE1 computer is a 16 bit <u>single</u>-cycle computer build in a secret lab in Olin building.

The all 16 registers, pc, and alu are eight bits wide. Register zero (r0) contains only a zero and cannot be overwritten. There is only one instruction format shown as follows:

Opcode	Register	Data or Address field
4 bits	4 bits	8 bits
15-12	11-8	7 - 0

The delay time of the functional units are as follows Memory Write 5 ns, Memory Read 3 ns, Register (read or write) 2 ns, and ALU & Adders 2 ns.


(a) Fill in the settings of the control lines determined by the all the instructions (use X for Don't Care)


Instruction	Operation lines determ	RegDst	A	MemWrite	RegWrite	BZ	P0
addi reg, data8	reg = reg + data8	Nogbot	7.	William	rtogvvitto	<u> </u>	
subi reg, data8	reg = reg – data8						
load reg, address8	reg=Memory[address8]						
store reg, address8	Memory[address8]=reg						
beq reg,address8	If (reg==0) { pc=pc+address8; }						
jmp address8	pc = address8						
jal reg, address8	reg=pc+2;pc=address8						

(b) Write "fail" for instructions will stuck-at-fault for RegDst

Instruction	RegDst Stuck-at-0	RegDst Stuck-at-1
addi		
subi		
load		
store		
beq		
jmp		
jal		

RISCEE 1 Architecture

(c) Fill in critical path times for each instruction.

Instruction	Instruction memory	Register Read	ALU operation	Data Memory	Register Write	Total Time	Clock Cycles	Instruction Mix
addi								40%
subi								0%
load								25%
store								10%
beq								25%
jmp								0%
jal								0%
	<u> </u>	<u>I</u>	<u>I</u>	<u>I</u>	1	Clock		

Clock	
Speed	
CPI	
MIPS	

(d) Fill in the Clock, CPI, and MIPS in the above table and show all calculations (Hint, single-cycle computer).

(e) Using the RISCEE1 instruction set, show how to swap two registers r1 and r2 (hint, use memory).

Problem 2 (50%): The brokerage firm said they talked to their investors and said they will only invest in multi-cycle computers. Furthermore, CPU Benchmarks showed that the subi, jmp, and jal instructions are not used.

- (a) Draw the finite state machine for multi-cycle RISCEE 2 architecture (addi, load, store, beq), show all states.
- (b) Place next to each state the amount of time needed to process that state.

(c) Fill in critical path times for each instruction (copy delay times from part b).

This is officed patritimes for each instruction (copy acidy times from partis).								
Instruction	Instruction	Register	ALU	Data	Register	Total	Clock	
	memory	Read	operation	Memory	Write	Time	Cycles	
addi								
load								
store								
beq								
•								

(d) Determine the fastest clock speed for the computer to work properly in frequency and show why.

(e) Fill in the Clock, CPI, and MIPS in the above table and show all calculations.

Instruction	Clock Cycles	Instruction Mix
addi		40%
load		25%
store		10%
beq		25%
Clock		
speed		
CPI		
MIPS		

(f) Suppose you do <u>not</u> know the instruction mix. Explain which one functional unit (Memory write 5ns, Memory Read 3ns, Register 2ns, or ALU 2ns) would you choose to improve by 1 ns and what will be the new clock speed? (show calculations)

Extra Credit which can be only used for this exam and the previous exam.

a) (9%). Assemble the following machine instructions into binary,

	Assume each	instruction	is located at	address	0x45891280
--	-------------	-------------	---------------	---------	------------

Fields 2 and etc	instruction		
	j	0x458912A0	
	beq	\$s1,\$t4,0x45891380	
	jal	0x45891388	
	Fields 2 and etc	j	

b)	(2%)	Give t	he two's	comi	olement	of the	8 k	oit binar	/ 0x12
\sim	· (- /0,	, 0.00			0101110116	00		JIC 211 141)	, ,,,,,

- c) (2%) Convert -25 into a 8 bit binary.
- d) (2%)Convert the 5 bit signed binary 10010 into decimal
- e) (5%) Add 0x2 and 0xF and what is the **overflow bit =**

Cin		
Sum		
Cout		

f) (5%) Multiply the 3 bit signed numbers 010 by 110 into a 6 bit signed number.