
All code must be commented!

Each problem part (1,2,3a,3b,…) will be in a separate file:
 problem_1.s ….

You may be asked to demonstrate your program.

You must turn in floppy and printouts.

1. (10%) Problem A.7 on page A-77 in textbook

2. (20%) Problem A.8 on page A-77 in textbook

3a. (10%) Modify the mapped_io.s program to echo (tx)
 each rx character back as is typed. Read A-36 to A-38

EECS 322: SPIM assignment / project

Note: functions return values via $v0
 if function uses $s0 to $s7 it must be saved on
 the stack. (see page 134 and page A-22)

3b. (10%) Improve the mapped_io.s by writing your own
ANSI C Language function: char *gets(char *s)

where
char *s is a pointer to a pre-allocated string of bytes.

Gets returns the original pointer *s passed in.

Gets inputs each character and echos it until a newline
is encountered (0x0a). The newline is not saved in the
final string. The returned string is null terminated.

EECS 322: SPIM assignment / project

3c. (10%) Improve the mapped_io.s by writing your own
ANSI C Language function: int puts(char *s)

where
char *s is a pointer to a string of bytes to be printed.

Puts prints each character until a null is encountered
(0x0a) in the string. A newline is then also printed to
the console.

Puts returns the number of characters written to the
console.

EECS 322: SPIM assignment / project

3d. (10%) Write your own ANSI C Language function:
int atoi(char *s)

where
char *s is a pointer to a null terminated string of bytes

of decimal ascii digits.

atoi returns the integer (I.e. convert to binary)
of the input string.

3e. (10%) Write tour own C Language function:
void itoa(char *s, int n);

where
int n is a binary integer

char *s is a pointer to a null terminated string of bytes
of decimal ascii digits converted from n.

EECS 322: SPIM assignment / project

3f. (20%) Rewrite problem 1 using your own subroutines.

No system calls allowed.

Also hand in the C language version of your program. You do
not need to run the C code.

EECS 322: SPIM assignment / project

char *gets(char *s) reads until newline, newline discarded,
and returns a string terminated with a zero.

int puts(char * s) prints a string followed by newline
and returns the number of characters written.

int atoi(char *s) converts a ascii string to binary number

void itoa(char *s, int n) returns a string converted from n

EECS 322: SPIM assignment / project

#Goto to dos prompt and type: pcspim -mapped_io
#Warning bugs have been inserted!

.globl main
main: #main has to be a global label

addu $s7, $0, $ra #save the return address in a global register

#Output the string "Hello World" on separate line
.data

.globl hello
hello: .asciiz "\nHello World\n" #string to print
goodbye: .asciiz "\nGoodbye\n"
rx_buffer: .asciiz "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n"
rx_cntl: .word 0xffff0000
tx_cntl: .word 0xffff0008

.text
li $v0, 4 #print_str (system call 4)
la $a0, hello # takes the address of string as an

argument
syscall

la $a0, rx_buffer
rx_wait:

lw $t1,rx_cntl
rx_wait1:

lw $t2,0($t1) # ready?
andi $t2,$t2,1
beq $t2,$0,rx_wait1 #no - loop
lw $t2,4($t1) #yes - get character
sb $t2,0($a0) #..store it
addi $t2,$t2,-10 #end of line?
beq $t2,$0,rx_wait2 #yes - make it zero
addi $a0,$a0,2 #increment string address
j rx_wait1

EECS 322: SPIM assignment / project

rx_wait2:
sb $0,0($a0) #store zero

la $a0, rx_buffer
tx_wait:

lw $t1,tx_cntl
tx_wait1:

lw $t2,0($t1)
andi $t2,$t2,1
beq $t2,$0,tx_wait1
lbu $t2,0($a0)
beq $t2,$0,tx_wait2
sw $t2,4($t1)
addi $a0,$a0,1 #increment string address
j tx_wait1

tx_wait2:

 #Usual stuff at the end of the main
addu $ra, $0, $s7 #restore the return address
jr $ra #return to the main program
add $0, $0, $0 #nop

