= Microsol Flight Saralstor 2000

EDSAC 1949: the first computer

E———eeeeeeeee e
e —————
= d
= . .

Designed and built at Cambridge
University, England, the EDSAC is
the first full-scale operational
stored-program computer, and is
therefore the final candidate for the
title of "the first computer”.

The EDSAC performed its first
calculation on May 6, 1949, when a
length of perforated paper tape was
threaded through the tape reader
connected to the machine, and a few seconds later, the computer's printer
began clattering out a list of numbers: 1, 4, 9, 16, 25, 36....

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html

EDSAC: subroutines, relocatable, BIOS
ﬁ% T e

* Indeed, EDSAC could access a library of programs called (would—you-_
believe) subroutines,

e including what was thought impossible at the time: a subroutine for
numerical integration which (by calling an "auxiliary" subroutine) could
be written without knowledge of the function to be integrated! (pass the
by address of another function to a subroutine)

A problem: whenever a tape was read the subroutine may not go to the
same memory locations so certain memory addresses had to be changed.
This problem was overcome by preceding each piece of code with a set
of "coordinating orders", making it self-relocatable.

» The next major advance demonstrated by this machine, was a
continuation of EDSAC’s subroutine idea. The concept of a bootstrap
was invented - a program that Is run every time the machine is turned on.
Today, we call that shadow ROM BIOS.

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.htmi

EDSAC architecture

&

Lhpm
1alll

phar o hER-l

o O

| 'rl'ITJ'H gLt
[T AT

11 Typical execution times were

1.5 milliseconds for the simple

commands = 667 adds/sec

CONTROL ALU
B seq Confrol
* Crder Tank Multiplier
Multiplicand
INPUT OUTPUT
1024 words of 18 bits each
5 1
Opcode Spare Address Length
16
Sign
16

4.5 milliseconds for a
multiply = 222 mults/sec

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/simulators/echo/refindex.html

EDSAC memory

Its main memory is of a type that had existed
for some years, but had not been used for a
computing machine: the "ultrasonic delay
line" memory.

It had been invented originally by William
Shockley of Bell Labs (also one of the co-
Inventors of the transistor, in 1948), and
Presper Eckert had made an improved version
In connection with radar systems.

The "delay storage™" referred to an
electromechanical delay line: oscillating
quartz crystals generated pulses in tubes of
mercury and the pulses were recycled to
provide memory.

In place of mercury, Turing suggested gin and
tonic because the speed of propagation was
relatively insensitive to temperature changes!

http://kbs.cs.tu-berlin.de/~jutta/time/msb-chronology-of-dcm.html ']
http://home.golden.net/~pjponzo/CSH.htm Memory Store: Mercury Delay Tanks

EDSAC Description

7 T e
System Clock: 0.5 Mhz
Arithmetic: No overflow or carry bit. Serial +, —, x and &
Registers: A=71 bits, multiplier H=35 bits, PC=10 bits, IR=15bits.

Better than a 32 bit processor!
One Instruction format: Opcode,g ,, Spare,; Address,, , Length,
Input/Ouput Paper tape, Printer, 0-9 telephone dial, 16x36 video
Memory organization: 1024 words (i.e. about 2 kilobytes)
= 32 mercury tanks containing 32 18-bit words

Boot strap loader: Hardwired circuit fills first tank with 31 instructions
Today, we call that shadow ROM BIOS
Short word: Mem[n] =Mem[n],; , (Bit O is always lost, can only use 17 bits)

Long word: Memgs ,[n+1] =Mem[n+1];4 of| Mem[n];q ,
Serial Memory: can run two adjacent memory location together
Technology: 3500 Tubes

Ref: The Origins of Digital Computers, Brian Randell, 1975, 2nd, Springer-Verlag

o
£

kf '.

EDSAC CPU

. mann
BER T EEE]

ALARRADN R0

e

LA ARRENTT
Y e -

Ref: http://www.dcs.warwick.ac.uk/~edsac

EDSAC /O

'ﬂ'-lq--pn““ &+
‘4_ LT L0 .

mf L *-.— ittt ey = L L]

e LT

i

[
o

=
-
-
- .
Lo
{;-
L
E
-
ol F -
-

Che University Mathematical Laboratory. Cambridge

May. [1950:

N |
)

3 :‘-' *nm-.ﬁ;m s ..._.'i'

- S -

FdFormer LForiman SA Barton GuJStewns RKimpton $6ill EChamberlain
DRWillis KNDodd MEllison BRVernon H.Pye CMBeech RBBonham-Carter AE.Glennic DJWhacler
EECMcKa JMBenmctt Whenwick MVWilkes ENMutch RA Prooker M. Mumford

(Absent — BMWorsley 0aN.Hunter)

EDSAC Instructions (formally called orders)

7
Instruction
AnS Azo.0 = Agp.0 T Mem[n],g 4[|0s, 4
AnlL Azo.0 = Asp.0 T Mem[n+1]55 4][055
Anw Az0.0 = Azo.0 + Mem.w[n]
Snw Az0.0 = Azo.0 — Mem.w[n]
RnS Az0.0 = A0 >> N
LnS Az0.0 = A0 <<
Cnw Az0.0 = Azo.0 & Mem.w[n]
Hnw H., o = Mem.w[n]
Vnw Az0.0 = Az t Hzy o*Mem.wn]
NnS Az0.0 = Azg.0 — Has o*Mem.win]

EDSAC Instructions

& ——
Instruction
TnsS Mem[nlig 1 = A .53 Azo.070;
TnlL Mem[n+1]ss 1 = Azg 367 Aso.0 =0;
UnsS Mem[n];s ; = Az 53
UnlL Mem[n+1]55 1 = Az 36;
EnS PCy o =(A>=0)?n: PCy ,+1;
GnS PCy; ;= (A<0)? n: PCy ,+1;
ZS Stop the machine and ring the warning bell
InS Mem|n],; ,, = Paper Tape Reader
OnS Printer = Mem[n],5 ;4 (print character in opcode position)

FnS Mem[n],; ,, = Printer character buffer

EDSAC 1952 Tic-Tac-Toe program

1
Z
3
4
E
[
=
g
9

Clear | Reset |
Start | _ Stop |

Single E.F‘|

TSR N T -
e SCH]] B O0rder Tank LongTank ID—EI
EXEEEETERTENT T ERTENTERERTERTEREESN M ultiplier
CETEETEETETTETEETEETEERTRNTRREESN M ultiplicand

‘DLa%mm 1 Kb) . TThe boax wilk a 'nuujht
M Lh FQ&L'C\;DYL 9

16 by 36 memory mapped monochrome (1-bit) video

Each memory bit corresponds to a pixel (picture element) on the display

The EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac

Ref: http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

EDSAC instruction comparison
» = s

Modern computers provide instructions for
call: jal address
return: jr $ra

iIndexing: Iw $rt, $offset($rs)
The EDVAC achieved this through self modifying code
At the time, the Von Neuman architecture was view as vital

(i.e. instructions and data are contained in the same memory)

For example: suppose loads on the MIPS could not add a base register

How would we do: lw $3,0ffset($1)
32: addi $2,%1,offset #add offset plus base
36: sh $2,42(%$0) #store within lw instruction

40: \W, $3,0($0)

EDSAC Hello, World

g{% B
31: T53S # A=0; last line of code +1 for loader 41: *S #letter shift
32: 0O41S # Printer = Mem[41..52] 42: HS
33: A32S # A=A+Mem[32]; get instruction at 32 || | 43: ES
34 A39S # A=A+2; add 1 to address field 44 LS
35: U32S # Mem[32]=A; store new instruction 45: LS
36: S40S # A=A-"0O53S”; stop output? 46: OS
37. G31S #if (A<0) then no and goto 31 47.'S #blank
38: ZS # stop machine and ring the bell 48: WS
39: P1S # use instruction to define word =2 49: OS
40: O53S # use instr. to compare last index 50: RS
51: LS
Note that the letter code and opcode as the same 52: DS
Simplifies loader (loader acted as an assembler too!)
11100 = ‘A’ = Add opcode

Note that the letter code and opcode as the same

|

3 for data

g larger h°'95§ Actual paper tape source input (load for initial orders 1)

“5°° small holes
o clock track

T53S041SA32SA39SU325S40SG31SZSP1S053S

*SHSESLSLSOSISWSOSRSLSDS

EDSAC versus the EDVAC: battle of being the first

o -

Bqé%ore von Neumann, computer programs were stored either
mechanically (on cards or even by wires that connected a matrix of
points together in a special pattern like ENIAC) or in separate memories
from the data used by the program.

Von Neumann introduced the concept of the stored program—~both the
program that specifies what operations are to be carried out and the data
used by the program are stored in the same memory.

Although EDVAC is generally regarded as the first stored program
computer, Randell states that this is not strictly true [Randell94].
EDVAC did indeed store data and instructions in the same memory, but
data and instructions did not have a common format and were not
Interchangeable.

Sadly, EDVAC was not a great success in practical terms. Its
construction was (largely) completed by April 1949, but it did not run its
first applications program until October 1951. (EDSAC was 1949)

Ref: http://wheelie.tees.ac.uk/users/a.clements/History/History.htm

EDSAC versus the Turing machine
In the 1930's, several mathematicians began to think about what it means

to be able to compute a function. As we might phrase their common
definition now:

A function is computable if it can be computed by a Turing machine(TM)
The TM model: A formal model for representing algorithms.
Church's Thesis: states that any algorithm can be represented as a TM.

Turing complete: A system that Is able to perform the same operations as
the TM.

Universal Turing machines: A TM which acts like a modern general
purpose computer in that it can "run" other TMs and thus solve any
problem which can be solved by TMs.

An algorithm Is a computational process that takes a problem instance
and in a finite amount of time produces a solution.

Undecidability: A formal proof that natural, important problems such as
the halting problem are "undecidable” or unsolvable.

Turing machine operation ooooeo AP I0[0[R

7 e
A Turing machine (TM) typically works as follows:

1. Read the input symbol from the tape.

2. Choose the next operation found in the state transition table
(i.e. FSM), based upon the current state, and the input symbol.

3. Write the output symbol indicated in the matrix cell.
4. Transform into the next state indicated in the matrix cell.
5. Move the tape pointer in the direction indicated in the matrix cell.

6. If the next state is not H, the Halt state, start the instruction loop at
the top.

- - mections may contain wtate | Read | Write | Move | Next State
Turing Machine 1 orQ, orbe blarlk
. 51 0 0 L 51
Infinitely extendable tape blank 1 L -
~ 1 blank R 51
K. e 0 1 R e
Tape head, looks at blank 0 R 52
one section at a time 1 1 L 51

State Transition Table for a Turing Machine

EDSAC versus the Turing machine .

7 —
A Turing machine is a very simple machine, but, logically speaking, has
all the power of any digital computer. It may be described as follows: A
Turing machine processes an infinite tape whereas a digital computer
processes a finite tape.

The most startling result of Turing's 1936 paper was his assertion that
there are well-defined problems that cannot be solved by any
computational procedure.

If these problems are formulated as functions, we call such functions
noncomputable; If formulated as predicates, they are called undecidable.
Using Turing's concept of the abstract machine, we would say that a
function is noncomputable if there exists no Turing machine that could

compute it.

EDVAC architecture comparison
» = s

EDVAC differs from the modern computers of today:
CPU: Serial ALU to parallel & multiple ALUs and pipelining
Registers: Serial 71 bit accumulator to 64bit parallel & multiple registers
Memory: Serial Mercury Delay Tubes to parallel DRAM CMOS
Single level memory to multilevel: Disk, RAM, L2, L1 cache
Input: Paper tape to keyboards, mouse, scanners, cdroms, ...

Output: Teletype printer and a bell to 24-bit video, 16-bit sound,

The key design components

parallelism: achieved though architecture
switching delay: achieved through technology (silicon)
area: vacuum tubes to silicon

power: vacuum tubes to silicon

Cost: mass manufacturing

Ir;;el Microprocessor History: 4004 -

e 1971 Intel 4004, 4-bit, 0.74 Mhz, 16 pins,
2250 Transistors

 Intel publicly introduced the world’s first single chip
microprocessor: U. S. Patent #3,821,715.

 Intel took the integrated circuit one step further, by placing
CPU, registers, memory access, I/O on a single chip

Intel Microprocessor History: 8080

7 e
« 1974 Intel 8080, 8-bit, 2 Mhz, 40 plns
4500 Transistors

Bill Gates & Paul Allen

write their first Microsoft software
product: Basic

Ir;;el Processor History: Penitum Pro

e 1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66

Mhz external, Superpipelining, 16Kb L1 cache, 256Kb L2
cache, 387 pins, 5.5 Million Transistors

Inmftel's Moo procesSs.sor
ewoluautiom

silicon process
tech = L T .Smgy T.OR O.Egy OuSp O @SSy Oo=ssg

FeervhbioarvyEr

P s eSS - - -
Il BSaT™™ D00 . .
I =S S

——l
Proosc eSS r

[gl =1 Lice
FPeerativarm & 11
PO e S SOl S

FerrhhoarreEr 1

Faerthiuurmyil®E PPe-aoe
PO e S S

(beyond Processor)

1P

System on a ch

SoC
%

Il be > 100M gates

ion: SoC’s wi

t

* The 2005 predic

LRI L) S RHER L

