
The first operational stored-program computer

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

EECS 322 Computer Architecture

EDSAC 1949: the first computer

Designed and built at Cambridge
University, England, the EDSAC is
the first full-scale operational
stored-program computer, and is
therefore the final candidate for the
title of "the first computer".

EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html

The EDSAC performed its first
calculation on May 6, 1949, when a
length of perforated paper tape was
threaded through the tape reader
connected to the machine, and a few seconds later, the computer's printer
began clattering out a list of numbers: 1, 4, 9, 16, 25, 36....

EDSAC: subroutines, relocatable, BIOS

• Indeed, EDSAC could access a library of programs called (would-you-
believe) subroutines,
• including what was thought impossible at the time: a subroutine for
numerical integration which (by calling an "auxiliary" subroutine) could
be written without knowledge of the function to be integrated! (pass the
by address of another function to a subroutine)

A problem: whenever a tape was read the subroutine may not go to the
same memory locations so certain memory addresses had to be changed.
This problem was overcome by preceding each piece of code with a set
of "coordinating orders", making it self-relocatable.
• The next major advance demonstrated by this machine, was a
continuation of EDSAC’s subroutine idea. The concept of a bootstrap
was invented - a program that is run every time the machine is turned on.
Today, we call that shadow ROM BIOS.
EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac and Ref: http://hoc.co.umist.ac.uk/storylines/compdev/electronic/edsac.html

EDSAC architecture

http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/simulators/echo/refindex.html

Typical execution times were
1.5 milliseconds for the simple
 commands = 667 adds/sec
4.5 milliseconds for a
 multiply = 222 mults/sec

EDSAC memory

http://kbs.cs.tu-berlin.de/~jutta/time/msb-chronology-of-dcm.html
http://home.golden.net/~pjponzo/CSH.htm

Its main memory is of a type that had existed
for some years, but had not been used for a
computing machine: the "ultrasonic delay
line" memory.

It had been invented originally by William
Shockley of Bell Labs (also one of the co-
inventors of the transistor, in 1948), and
Presper Eckert had made an improved version
in connection with radar systems.

The "delay storage" referred to an
electromechanical delay line: oscillating
quartz crystals generated pulses in tubes of
mercury and the pulses were recycled to
provide memory.

In place of mercury, Turing suggested gin and
tonic because the speed of propagation was
relatively insensitive to temperature changes!

Memory Store: Mercury Delay Tanks

EDSAC Description
System Clock: 0.5 Mhz

Arithmetic: No overflow or carry bit. Serial +, –, ×××× and &
Registers: A=71 bits, multiplier H=35 bits, PC=10 bits, IR=15bits.

Better than a 32 bit processor!
One Instruction format: Opcode18..14 Spare13 Address12..2 Length1

Input/Ouput Paper tape, Printer, 0-9 telephone dial, 16x36 video
Memory organization: 1024 words (i.e. about 2 kilobytes)

= 32 mercury tanks containing 32 18-bit words
Boot strap loader: Hardwired circuit fills first tank with 31 instructions

Today, we call that shadow ROM BIOS
Short word: Mem[n] =Mem[n]18..1 (Bit 0 is always lost, can only use 17 bits)
Long word: Mem35..1[n+1] = Mem[n+1]18..0|| Mem[n]18..1

Serial Memory: can run two adjacent memory location together
Technology: 3500 Tubes

Ref: The Origins of Digital Computers, Brian Randell, 1975, 2nd, Springer-Verlag

EDSAC CPU

Ref: http://www.dcs.warwick.ac.uk/~edsac

EDSAC I/O

EDSAC People

EDSAC Instructions (formally called orders)

Instruction
A n S A70..0 = A70..0 + Mem[n]18..1||052..0

A n L A70..0 = A70..0 + Mem[n+1]35..1||035..0

A n w A70..0 = A70..0 + Mem.w[n]
S n w A70..0 = A70..0 – Mem.w[n]
R n S A70..0 = A70..0 >> n
L n S A70..0 = A70..0 << n
C n w A70..0 = A70..0 & Mem.w[n]
H n w H34..0 = Mem.w[n]
V n w A70..0 = A70..0 + H34..0*Mem.w[n]
N n S A70..0 = A70..0 – H34..0*Mem.w[n]

EDSAC Instructions

Instruction
T n S Mem[n]18..1 = A70..53; A70..0=0;
T n L Mem[n+1]35..1 = A70..36; A70..0 =0;
U n S Mem[n]18..1 = A70..53

U n L Mem[n+1]35..1 = A70..36;

E n S PC9..0 = (A >= 0)? n : PC9..0+1;
G n S PC9..0 = (A < 0)? n : PC9..0+1;
Z S Stop the machine and ring the warning bell

I n S Mem[n]18..14 = Paper Tape Reader
O n S Printer = Mem[n]18..14 (print character in opcode position)
F n S Mem[n]18..14 = Printer character buffer

EDSAC 1952 Tic-Tac-Toe program

16 by 36 memory mapped monochrome (1-bit) video
Each memory bit corresponds to a pixel (picture element) on the display

Ref: http://www.cl.cam.ac.uk/UoCCL/misc/EDSAC99/

The EDSAC Simulator: http://www.dcs.warwick.ac.uk/~edsac

EDSAC instruction comparison

Modern computers provide instructions for
call: jal address
return: jr $ra
indexing: lw $rt, $offset($rs)

The EDVAC achieved this through self modifying code

At the time, the Von Neuman architecture was view as vital
(i.e. instructions and data are contained in the same memory)

For example: suppose loads on the MIPS could not add a base register
How would we do: lw $3,offset($1)

32: addi $2,$1,offset #add offset plus base
36: sh $2,42($0) #store within lw instruction
40: lw $3,0($0)

EDSAC Hello, World

31: T53S # A=0; last line of code +1 for loader
32: O41S # Printer = Mem[41..52]
33: A32S # A=A+Mem[32]; get instruction at 32
34: A39S # A=A+2; add 1 to address field
35: U32S # Mem[32]=A; store new instruction
36: S40S # A=A-”O53S”; stop output?
37: G31S # if (A<0) then no and goto 31
38: ZS # stop machine and ring the bell
39: P1S # use instruction to define word =2
40: O53S # use instr. to compare last index

31: T53S # A=0; last line of code +1 for loader
32: O41S # Printer = Mem[41..52]
33: A32S # A=A+Mem[32]; get instruction at 32
34: A39S # A=A+2; add 1 to address field
35: U32S # Mem[32]=A; store new instruction
36: S40S # A=A-”O53S”; stop output?
37: G31S # if (A<0) then no and goto 31
38: ZS # stop machine and ring the bell
39: P1S # use instruction to define word =2
40: O53S # use instr. to compare last index

41: *S #letter shift
42: HS
43: ES
44: LS
45: LS
46: OS
47: !S #blank
48: WS
49: OS
50: RS
51: LS
52: DS

41: *S #letter shift
42: HS
43: ES
44: LS
45: LS
46: OS
47: !S #blank
48: WS
49: OS
50: RS
51: LS
52: DS

Note that the letter code and opcode as the same
Actual paper tape source input (load for initial orders 1)
T53SO41SA32SA39SU32SS40SG31SZSP1SO53S
*SHSESLSLSOS!SWSOSRSLSDS

Note that the letter code and opcode as the same
Actual paper tape source input (load for initial orders 1)
T53SO41SA32SA39SU32SS40SG31SZSP1SO53S
*SHSESLSLSOS!SWSOSRSLSDS

Note that the letter code and opcode as the same
Simplifies loader (loader acted as an assembler too!)
 11100 = ‘A’ = Add opcode

EDSAC versus the EDVAC: battle of being the first
Before von Neumann, computer programs were stored either
mechanically (on cards or even by wires that connected a matrix of
points together in a special pattern like ENIAC) or in separate memories
from the data used by the program.
Von Neumann introduced the concept of the stored program—both the
program that specifies what operations are to be carried out and the data
used by the program are stored in the same memory.
Although EDVAC is generally regarded as the first stored program
computer, Randell states that this is not strictly true [Randell94].
EDVAC did indeed store data and instructions in the same memory, but
data and instructions did not have a common format and were not
interchangeable.
Sadly, EDVAC was not a great success in practical terms. Its
construction was (largely) completed by April 1949, but it did not run its
first applications program until October 1951. (EDSAC was 1949)

Ref: http://wheelie.tees.ac.uk/users/a.clements/History/History.htm

In the 1930's, several mathematicians began to think about what it means
to be able to compute a function. As we might phrase their common
definition now:
A function is computable if it can be computed by a Turing machine(TM)
The TM model: A formal model for representing algorithms.
Church's Thesis: states that any algorithm can be represented as a TM.
Turing complete: A system that is able to perform the same operations as
the TM.
Universal Turing machines: A TM which acts like a modern general
purpose computer in that it can "run" other TMs and thus solve any
problem which can be solved by TMs.
An algorithm is a computational process that takes a problem instance
and in a finite amount of time produces a solution.
Undecidability: A formal proof that natural, important problems such as
the halting problem are "undecidable" or unsolvable.

EDSAC versus the Turing machine

Turing machine operation

A Turing machine (TM) typically works as follows:
1. Read the input symbol from the tape.
2. Choose the next operation found in the state transition table
 (i.e. FSM), based upon the current state, and the input symbol.
3. Write the output symbol indicated in the matrix cell.
4. Transform into the next state indicated in the matrix cell.
5. Move the tape pointer in the direction indicated in the matrix cell.
6. If the next state is not H, the Halt state, start the instruction loop at
the top.

EDSAC versus the Turing machine

A Turing machine is a very simple machine, but, logically speaking, has
all the power of any digital computer. It may be described as follows: A
Turing machine processes an infinite tape whereas a digital computer
processes a finite tape.

The most startling result of Turing's 1936 paper was his assertion that
there are well-defined problems that cannot be solved by any
computational procedure.

If these problems are formulated as functions, we call such functions
noncomputable; if formulated as predicates, they are called undecidable.
Using Turing's concept of the abstract machine, we would say that a
function is noncomputable if there exists no Turing machine that could
compute it.

EDVAC architecture comparison

EDVAC differs from the modern computers of today:
CPU: Serial ALU to parallel & multiple ALUs and pipelining
Registers: Serial 71 bit accumulator to 64bit parallel & multiple registers
Memory: Serial Mercury Delay Tubes to parallel DRAM CMOS

 Single level memory to multilevel: Disk, RAM, L2, L1 cache
Input: Paper tape to keyboards, mouse, scanners, cdroms, …
Output: Teletype printer and a bell to 24-bit video, 16-bit sound,

The key design components
parallelism: achieved though architecture
switching delay: achieved through technology (silicon)
area: vacuum tubes to silicon
power: vacuum tubes to silicon
cost: mass manufacturing

• 1971 Intel 4004, 4-bit, 0.74 Mhz, 16 pins,
2250 Transistors

• Intel publicly introduced the world’s first single chip
microprocessor: U. S. Patent #3,821,715.

• Intel took the integrated circuit one step further, by placing
CPU, registers, memory access, I/O on a single chip

Intel Microprocessor History: 4004

• 1974 Intel 8080, 8-bit, 2 Mhz, 40 pins,
4500 Transistors

Altair 8800 Computer

Bill Gates & Paul Allen
write their first Microsoft software

product: Basic

Intel Microprocessor History: 8080

• 1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66
Mhz external, Superpipelining, 16Kb L1 cache, 256Kb L2
cache, 387 pins, 5.5 Million Transistors

Intel Processor History: Penitum Pro

Intel’s Microprocessor evolution

• The 2005 prediction: SoC’s will be > 100M gates

SoC: System on a chip (beyond Processor)

