Name:
email:
Problem 1 (20\%). Show each step of the pipeline machine (page 470 and 469) for the following instruction sequence: (note: Z is the zero flag from the ALU)

Assume $\$ 2=9, \$ 4=8$; Mem[12]=742; Mem[16]=1769. Treat the "nop" instruction as "add $\$ 0, \$ 0, \$ 0$ ".
or \$2, \$4, \$4 \#opcode \$rd, \$rs, \$rt
sw $\quad \$ 4,8(\$ 4) \quad \# o p c o d e \quad \$ r t$, offset(\$rs)
nop
nop

$\begin{array}{\|l\|l} \hline \text { C } \\ \text { lo } \\ \text { c } \\ \text { k } \end{array}$	$\begin{aligned} & \text { <IF/ID> } \\ & \text { <PC, IR> } \end{aligned}$	```<ID/EX> <WB,M,EX,PC,A,B,S,Rt,R d>```	$\begin{aligned} & \text { <EX/MEM> } \\ & \text { <WB,M,PC,Z, ALU, B, R> } \end{aligned}$	<MEM/WB> <WB,MDR,ALU,R>
0	<0,?>	<?,?,?,?,,,,,,?,?,?>	<,,?,,,,,?,,?,>>	<?,?,?,?,?>
1	<4,"or \$2,\$4, \$4"> observe that or $\$ \mathrm{rd}=\$ 2, \$ \mathrm{sr}=\$ \mathrm{rt}=\$ 4$	<?,?,?,,,,?,?,?,?,?>	<?,?,?,?,?,?,?>	<?,?,?,?,?>
2	$\begin{aligned} & \langle\mathbf{8}, " \text { sw } \$ \mathbf{4 , 8}(\$ 4) \text { "> } \\ & \text { observe that } \\ & \text { sw \$rt=\$4,8(\$rs=\$4) } \end{aligned}$	$<10,000,1100,4,8,8, \mathrm{X}, \$ 4, \$ 2>$ observe that <wb=10, $m=000, e x=1100, p c=4$, fetch reg[\$rs $\rightarrow \$ 4] \rightarrow 8 \rightarrow \mathrm{~A}$, fetch reg $[\$ \mathrm{St} \rightarrow \$ 4] \rightarrow 8 \rightarrow \mathrm{~B}$, $\mathrm{S}=001000000$ 100101=X, \$rd=\$4>	<?,?,?,?,?,?,?>	<?,?,?,?,?>
3	$\begin{aligned} & \hline \text { <12, "nop"> } \\ & \frac{\text { observe that }}{\text { add } \$ r d=0, \$ r s=0, \$ r t=0} \end{aligned}$	$\begin{aligned} & <\mathbf{0 X}, \mathbf{0 0 1}, \mathbf{X 0 0 1}, \mathbf{8}, \mathbf{8}, \mathbf{8}, \mathbf{8}, \$ 4, \$ \mathbf{X}> \\ & \text { observe that } \\ & <\text { wb }=0 \mathrm{X}, \mathrm{~m}=001, \mathrm{ex}=\mathrm{X} 001, \mathrm{pc}=8, \\ & \text { reg }[\$ \mathrm{~s} \rightarrow \$ 4] \rightarrow 8 \rightarrow \mathrm{~A}, \\ & \text { reg }[\$ \mathrm{rt} \rightarrow \$ 4] \rightarrow 8 \rightarrow \mathrm{~B}, \mathrm{~S}=8, \$ \mathrm{rt}=\$ 4, \\ & \$ \mathrm{rd}=\$ \mathrm{X}> \end{aligned}$	$\begin{aligned} & \text { <10, 000, X, 0, 8, 8, \$2> } \\ & \text { observe that } \\ & <w b=10, \mathrm{~m}=000, \\ & \text { pc=X }(\text { don't care, not a branch }), \\ & \text { ALU zero flag }=\mathrm{Z}=0, \\ & \text { ALU=A or } \mathrm{B}=8+8=8, \mathrm{~B}=8, \\ & \text { destination } R=(\$ \text { rt or } \$ \mathrm{rd})=\$ 2> \\ & \hline \end{aligned}$	<?,?,?,?,?>
4	$\begin{aligned} & \text { <16, "nop"> } \\ & \frac{\text { observe that }}{\text { add } \$ r d=0, \$ r s=0, \$ r t=0} \end{aligned}$	$\begin{aligned} & <\mathbf{1 0}, \mathbf{0 0 0}, \mathbf{1 1 0 0}, \mathbf{1 2}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \$ \mathbf{0}, \$ \mathbf{0}\rangle \\ & \frac{\text { observe that }}{<\mathrm{wb}=10, \mathrm{~m}=}=000, \text { ex }=1100, \mathrm{pc}=12, \\ & \$ r \mathrm{~s}=\$ 0=0=\mathrm{A}, \$ \mathrm{rt}=\$ 0=0=\mathrm{B}, \mathrm{~S}=0 \\ & \$ \mathrm{rt}=\$ 0, \$ \mathrm{rd}=\$ 0> \end{aligned}$	$<0 X, 001, \mathrm{X}, \mathrm{X}$ or $0,16,8, \mathrm{X}$ or $\$ 4>$ observe that <wb=0X, m=001, $\mathrm{pc}=\mathrm{X}$ (don't care, not a branch), ALU zero flag $=\mathrm{Z}=\mathrm{X}$ or 0 , ALU $=\mathrm{A}+$ offset $=8+8=16, \mathrm{~B}=8$, $\mathbf{R}=(\$ \mathrm{rt}$ or $\$ \mathbf{~ r d})=\mathbf{X}$ or \$4> (don't care, no register writeback) Store to memory Mem[ALU=16] $=8$	$\langle\mathbf{1 0}, \mathrm{X}, \mathbf{8}, \$ 2\rangle$ Register writeback to \$4 No memory fetch Observe that <wb=10, mdr=X, ALU=8, R=\$2>
5	$\begin{aligned} & \hline\langle\mathbf{2 0}, \text { "nop"> } \\ & \frac{\text { observe that }}{\text { add \$rd }=0, \$ \mathrm{rs}=0, \$ \mathrm{rt}=0} \end{aligned}$	$\begin{aligned} & <\mathbf{1 0 , 0 0 0}, \mathbf{1 1 0 0}, \mathbf{1 6}, \mathbf{0}, \mathbf{0}, \mathbf{0}, \$ \mathbf{0}, \$ \mathbf{0}> \\ & \text { observe that } \\ & <\mathrm{wb}=10, \mathrm{~m}=000, \text { ex }=1100, \mathrm{pc}=16, \\ & \$ \mathrm{r} s=\$ 0=0=\mathrm{A}, \$ \mathrm{rt}=\$ 0=0=\mathrm{B}, \mathrm{~S}=0, \\ & \$ \mathrm{rt}=\$ 0, \$ \mathrm{rd}=\$ 0> \end{aligned}$	$\begin{aligned} & \text { <10,000,X,0,0,0,\$0>} \\ & \frac{\text { observe that }}{<\mathrm{wb}=10, \mathrm{~m}=000, \mathrm{pc}=X, \mathrm{Z}=0,} \\ & \mathrm{ALU}=\mathrm{A}+\mathrm{B}=0+0=0, \mathrm{~B}=0, \mathrm{R}=\$ 0> \end{aligned}$	<0X, X, X, X or \$4> Write to Memory

Problem 2. Assume a simple 6 stage pipeline with the following execution times

1	IF	Instruction fetch 1st part	3 ns
2	IS	Instruction fetch 2nd part	4 ns
3	ID	Register Read	$2 \mathrm{~ns} ;$ Branch decision made here
4	EX	ALU	3 ns
5	MEM	Data Access	8 ns,
6	WB	Register Write	$2 / \mathrm{ss}$

This computer has the following instructions:

Instruction		Operation
add	\$rd, \$rs, \$rt	\$rd $=$ \$rs + \$rt
beq	\$rs, \$rt, disp16	$\mathrm{pc}=\mathrm{pc}+2+(\$ \mathrm{~s}-$ \$rt=0?disp16:0)
Iw	\$rt, addr16(\$rs)	\$rt = Mem[addr16+\$rs]
sw	\$rt, addr16(\$rs)	Mem[addry $0+\$ r s]=\$ r t$

2a (16\%) Fill in the following tables

The following parts refer to the pipelined machine only
For the following code: Assume no forwarding.
2c (15\%) For the following code: Assume no forwarding and no branch prediction.
Draw lines showing all the data dependencies and show the pipeline sequence (IF,IS,ID, EX, M,WB) and draw lines showing the forwarding. Note: Branch decision is made in the ID stage.

| Time | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| sub $\$ 3, \$ 5$ | IF | IS | ID | EX | M | W | | | | | | | | | | |
| beq $\$ \$ \$ 3$ loop | | IF | IS | ID | ID | ID | EX | M | W | | | | | | | |
| add $\$ 4, \$ 4, \$ 5$ | | | IF | IS | IS | IS | ID | EX | M | W | | | | | | |

2d (12\%) Draw lines showing all the data dependencies in "Time" column.
and show the 6 -stage pipeline sequence (IF, IS, ID, EX, M, WB) for the following code

Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	
sw	$\$ 1,4(\$ 2)$	IF	IS	ID	EX	M	W										
sub	$\$ 4, \$ 1, \$ 2$		IF	IS	ID	EX	M	W									
add	$\$ 5, \$ 4, \$ 2$			IF	IS	ID	ID	ID	EX	M	W						
Iw	$\$ 3,8(\$ 5)$				IF	IS	IS	IS	ID	ID	ID	EX	M	W			

2e (12\%) Using forwarding, show the 6-stage pipeline sequence (IF, IS, ID, EX, M, WB) and draw lines showing the forwarding.

Time		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
sw	$\$ 1,4(\$ 2)$	IF	IS	ID	EX	M	W										
sub	$\$ 4, \$ 1, \$ 2$		IF	IS	ID	EX	M	W									
add	$\$ 5, \$ 4, \$ 2$																
			IF	IS	ID	EX	M	W									
Iw	$\$ 3,8(\$ 5)$				IF	IS	ID	EX	M	W							

$2 f(5 \%)$ Increase the number of pipeline stages to 7 stages. What stage would you split and why?
I would split the MEM stage into 2 stages (Mem1=4ns and Mem2=4ns) since is the slowest resource (8ns) of all the others.
Note: any other combination would not be optimal: Mem1=3ns and Mem2=5ns
Decreasing the worst case stage delay allows for the pipeline clock to increase.
This results in a faster MIPS.
$\mathbf{2 g}(5 \%)$ What is the 7 -stage pipeline clock? 4 ns or 250 MHz and (assuming no hazards) MIPS $=250$ MIPS
MIPS = Clock/CPI = $250 \mathrm{Mhz} /$ 1CPI
Note: $\mathbf{2 5 0}$ MIPS is now faster than all cases in problem 2b!
Problem 3. Show all calculations for the following questions.
Assume an add takes 1 cycle if no dependency and if dependant then 3 clocks Assume there is a 30% data dependency.
Assume a branch takes 2 cycle if true prediction and if false prediction then 7 clocks.
Assume that 15% of the branches are mispredicted.
3a(5\%) What is the average add instruction time in clocks? \qquad 1.6 \qquad

$$
1 * 70 \%+3 * 30 \%=1.6
$$

$3 \mathrm{~b}(5 \%)$ What is the average branch instruction time in clocks? \qquad 2.75 \qquad

$$
2 * 85 \%+7 * 15 \%=2.75
$$

Over the past three years, the Goldman Sachs High Technology Group has been the lead manager for initial public offerings (IPOs) of 129 technology companies. They (www.gs.com/hightech) would like you to have access to the following extra credit which can be used for this and previous exams.

For the following instruction sequence fill in the direct-mapped writeback data cache. The word size is 16 bits. Memory[0]=\$4=0x742; Memory[42]=\$3=0x1412; Memory[52]=0x1585; Memory[58]=0x1769;

GS1a) (5\%) Fill in the miss cache column.

tag	index	byte offset		nstruction	Cache Miss?
111	01	0	Iw	\$1, 58(\$0)	Yes
110	10	1	lbu	\$2, 53(\$0)	Yes
110	10	0	sw	\$3, 52(\$0)	No (already loaded by lbu \$2,53(\$0))
000	00	0	Iw	\$4, 0(\$0)	Yes
101	01	1	lbu	\$5, 43(\$0)	Yes
111	01	0		\$6, 58(\$0)	Yes (flushed out by lbu \$5,43(\$0))

GS1b) (10\%) Show all states and underline the final state of the direct mapped data cache:

Index	Valid	Dirty	Tag	Data
00	$\mathbf{N} \rightarrow \mathbf{Y}$	\mathbf{N}	000	0×742
01	$\mathbf{N} \rightarrow \mathbf{Y}$	\mathbf{N}	$111 \rightarrow 101 \rightarrow 111$	$0 \times 1779 \rightarrow 0 \times 1412 \rightarrow 0 \times 1769$
10	$\mathrm{~N} \rightarrow \mathbf{Y}$	$\mathbf{N} \rightarrow \mathbf{Y}$	110	$0 \times 1585 \rightarrow 0 \times 1412$
11	\mathbf{N}	\mathbf{N}		

GS2a. (10\%) Assume 1536 bytes of real memory (0-511)(512-1023)(1024-1535); LRU, a page size of 512 bytes and no pages loaded in memory. Fill in the page fault columns. (Blank space implies No)

instruction	Page fault?	Flush which real page?	Write flushed page to disk?	Load what new virtual page	Load into what real page	
Iw	$\$ 1,58(\$ 0)$	Yes			$0(=0 . .511)$	$0(=0 . .511)$
Sw	$\$ 7,52(\$ 0)$					
Iw	$\$ 5,1412(\$ 0)$	Yes			$2(=1024 . .1535)$	$1(=512 . .1023)$
Iw	$\$ 2,742(\$ 0)$	Yes			$1(=512 . .1023)$	$2(=1024 . .1535)$
sw	$\$ 6,1582(\$ 0)$	Yes	$0(=0 . .511)$	Yes	$3(=152.2047)$	$0(=0 . .511)$
sb	$\$ 1,43(\$ 0)$	Yes	$1(=512 . .1023)$		$0(=0 . .511)$	$1(=512 . .1023)$
Ibu $\$ 2,1769(\$ 0)$						

GS2b.. (5\%) Fill out the TLB after execution of part GS2a. (hint: think of a fully associative cache)

Valid	Dirty	Virtual Page Tag	Physical Page Number
$\mathbf{N} \rightarrow \mathbf{Y} \rightarrow \mathbf{N} \rightarrow \mathbf{Y}$	$\mathbf{N} \rightarrow \mathbf{Y} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$	0	$\mathbf{X} \rightarrow \mathbf{0} \rightarrow \mathbf{X} \rightarrow 1$
$\mathbf{N} \rightarrow \mathbf{Y} \rightarrow \mathbf{N}$	$\mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N}$	2	$\mathbf{X} \rightarrow \mathbf{1} \rightarrow \mathbf{X}$
$\mathbf{N} \rightarrow \mathbf{Y}$	$\mathbf{N} \rightarrow \mathbf{N}$	1	$\mathbf{X} \rightarrow 2$
$\mathbf{N} \rightarrow \mathbf{Y}$	$\mathbf{N} \rightarrow \mathbf{N}$	3	$\mathbf{X} \rightarrow 0$

Note: page $0=0 . .511$, page $1=512 . .1023$, page $2=1024 . .1535$, page $3=1536 . .2047, \ldots$

