
Improving Memory Access: the Cache

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

EECS 322 Computer Architecture

Review: Models

Single-cycle model (non-overlapping)
• The instruction latency executes in a single cycle
• Every instruction and clock-cycle must be

stretched to the slowest instruction (p.438)

Pipeline model (overlapping, p. 522)
• The instruction latency executes in multiple-cycles
• The clock-cycle must be stretched to the slowest step
• The throughput is mainly one clock-cycle/instruction
• Gains efficiency by overlapping the execution of multiple

instructions, increasing hardware utilization. (p. 377)

Multi-cycle model (non-overlapping)
 • The instruction latency executes in multiple-cycles
 • The clock-cycle must be stretched to the slowest step
 • Ability to share functional units within the execution

of a single instruction

Pipeline hazards
• Solution #1 always works (for non-realtime) applications:

 stall.
Structural Hazards (i.e. fetching same memory bank)

 • Solution #2: partition architecture

Control Hazards (i.e. branching)
 • Solution #1: stall! but decreases throughput
 • Solution #2: guess and back-track
 • Solution #3: delayed decision: delay branch & fill slot

Data Hazards (i.e. register dependencies)
 • Worst case situation
 • Solution #2: re-order instructions
 • Solution #3: forwarding or bypassing: delayed load

Review: Pipeline Hazards

Instruction
memory

Read
address

Instruction

16 32

Write
register
Write
data

Read
data 1

Read
data 2

Read
register 1
Read
register 2

M
u
x

3

ALU
result

Zero
ALU

Data
memory

Address

Write
data

Read
data M

u
x

Sign
extend

PC

4

Add
Add
Result

M
u
x

Shift
left 2

RegWrite

MemWrite
ALUctl

MemRead

Branch

MemtoRegALUSrc

M
u
x

RegDst

And

Harvard Architecture: Separate instruction and data memory

2 adders: PC+4 adder, Branch/Jump offset adder

Review: Single-Cycle Datapath

Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory
MemData

Write
data

M
u
x

0

1
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

ALUOp

ALUSrcB

RegDst RegWrite

Instruction
[15– 0]

Instruction [5– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

Multi-cycle = 1 ALU + 1 Mem + 5½ Muxes + 5 Reg (IR,A,B,MDR,ALUOut) + FSM

Single-cycle= 1 ALU + 2 Mem + 4 Muxes + 2 adders + OpcodeDecoders

Combine adders: add 1½ Mux & 3 temp. registers, A, B, ALUOut
Combine Memory: add 1 Mux & 2 temp. registers, IR, MDR

Review: Multi vs. Single-cycle Processor Datapath

Shift
left 2

MemtoReg

IorD MemRead MemWrite

PC

Memory
MemData

Write
data

M
u
x

0

1
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Instruction
[15– 11]

M
u
x

0

1

M
u
x

0

1

4

ALUOp

ALUSrcB

RegDst RegWrite

Instruction
[15– 0]

Instruction [5– 0]

Sign
extend

3216

Instruction
[25– 21]

Instruction
[20– 16]

Instruction
[15– 0]

Instruction
register

1 M
u
x

0

3
2

ALU
control

M
u
x

0

1
ALU

result
ALU

ALUSrcA

ZeroA

B

ALUOut

IRWrite

Address

Memory
data

register

Multi-cycle = 1 ALU + 1 Mem + 5½ Muxes + 5 Reg (IR,A,B,MDR,ALUOut) + FSM

Single-cycle= 1 ALU + 2 Mem + 4 Muxes + 2 adders + OpcodeDecoders

Review: Multi-cycle Processor Datapath

5x32 = 160 additional FFs for multi-cycle processor over single-cycle processor5x32 = 160 additional FFs for multi-cycle processor over single-cycle processor

PC

Instruction�
memory

Address

In
st

ru
ct

io
n

Instruction�
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction�
[15– 0]

0

0
Registers

Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�
u�
x

1
Write�
data

Read�
data M�

u�
x

1

ALU�
control

RegWrite

MemRead

Instruction�
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data�
memory

PCSrc

Zero

Add Add�
result

Shift�
left 2

ALU�
result

ALU
Zero

Add

0

1

M�
u�
x

0

1

M�
u�
x

Figure 6.25

PC

32

bits

PC

32

bits

IR

32

bits

IR

32

bits

PC
32

PC
32

A
32

A
32

B
32

B
32

Si
32

Si
32

RT
5

RT
5

RD
5

RD
5

PC

32

PC

32

Z

1

Z

1

ALU
Out
32

ALU
Out
32

B
32

B
32

D
5

D
5

M

D

R

32

M

D

R

32

ALU
Out
32

ALU
Out
32

D
5

D
5

Datapath
Registers

+ 213 FFs+ 213 FFs

160 FFs160 FFs

2 W
3 M
4 EX

2 W
3 M
4 EX

2 W
3 M

2 W
3 M

2 W2 W

+ 16 FFs+ 16 FFs

PC
 3

2
bi

ts
PC

 3
2

bi
ts

213+16 = 229 additional FFs for pipeline over multi-cycle processor

Single-cycle model
• 8 ns Clock (125 MHz), (non-overlapping)
• 1 ALU + 2 adders
• 0 Muxes
• 0 Datapath Register bits (Flip-Flops)

Multi-cycle model
 • 2 ns Clock (500 MHz), (non-overlapping)
 • 1 ALU + Controller
 • 5 Muxes
 • 160 Datapath Register bits (Flip-Flops)
Pipeline model
 • 2 ns Clock (500 MHz), (overlapping)
 • 2 ALU + Controller
 • 4 Muxes
 • 373 Datapath + 16 Controlpath Register bits (Flip-Flops)

Chip Area Speed

Review: Overhead

sub $2,$1,$3

and $12,$2,$5

ClockClock

IF

11 66

EX

77

M

88

WB

ID

IF

22

MIPS = Clock = 500 Mhz = 167 MIPS
 CPI 3

WB

55

ID

Write
1st
Half

Write
1st
Half

Read
2nd
Half

Read
2nd
Half

33

EX

StallStall

ID

M

44

StallStall

ID

Suppose every instruction is dependant = 1 + 2 stalls = 3 clocks

Review: Data Dependencies: no forwarding

Review: R-Format Data Dependencies: Hazard Conditions

1a Data Hazard (2 stalls): EX/MEM.$rd = ID/EX.$rs
 sub $2, $1, $3 sub $rd, $rs, $rt

and $12, $2, $5 and $rd, $rs, $rt

1b Data Hazard (2 stalls): EX/MEM.$rd = ID/EX.$rt
 sub $2, $1, $3 sub $rd, $rs, $rt

and $12, $1, $2 and $rd, $rs, $rt

2a Data Hazard (1 stall): MEM/WB.$rd = ID/EX.$rs
 sub $2, $1, $3 sub $rd, $rs, $rt

and $12, $1, $5 sub $rd, $rs, $rt
or $13, $2, $1 and $rd, $rs, $rt

2b Data Hazard (1 stall): MEM/WB.$rd = ID/EX.$rt
 sub $2, $1, $3 sub $rd, $rs, $rt

and $12, $1, $5 sub $rd, $rs, $rt
or $13, $6, $2 and $rd, $rs, $rt

Data Dependencies (hazard 1a and 1b): with forwarding

sub $2,$1,$3

and $12,$2,$5

ClockClock

IF

11 66

WBM

WB

55

Detected
Data Hazard 1a

ID/EX.$rs = EX/M.$rd

Detected
Data Hazard 1a

ID/EX.$rs = EX/M.$rd

ID

33

EX

EX

M

44

ID

IF

22

Can R-Format dependencies completely be resolved by forwarding?
and $12,$2,$5
beq $12,$0,L7

Load Data Hazards: Hazard detection unit (page 490)

IF/ID.$rs
IF/ID.$rt = ID/EX.$rt ΛΛΛΛ ID/EX.MemRead=1}
Source Destination

Stall Condition

Stall Example
 lw $2, 20($1) lw $rt, addr($rs)

and $4, $2, $5 and $rd, $rs, $rt

No Stall Example: (only need to look at next instruction)
 lw $2, 20($1) lw $rt, addr($rs)

and $4, $1, $5 and $rd, $rs, $rt
or $8, $2, $6 or $rd, $rs, $rt

WBMEX

Load Data Dependencies: with forwarding

lw $2,20($1)

and $4,$2,$5

ClockClock

IF

11 66

WB

55

Detected
Data Hazard

IF/ID.$rs = EX/M.$rt

Detected
Data Hazard

IF/ID.$rs = EX/M.$rt

ID

33

EX M

44

ID

IF

22

ID

Load time = 1 (no dependancy) to 2 (with dependency on next instruction)

Even through the Load stalls the next instruction, the stall time is added
to the load instruction and not the next instruction.

Load dependencies cannot be completely resolved by forwarding

Delay slot

beq $1,$3,L7

add $4,$6,$6

L7: lw $4, 50($7)

• • •

BeforeBefore

beq $1,$3,7

add $4,$6,$6

L7: lw $4, 50($7)

• • •

AfterAfter

beq $1,$4,L7
add $4,$6,$6

Can you move the add
instruction into the delay

slot?

Can you move the add
instruction into the delay

slot?

No - but a delay slot still
requires an instruction

No - but a delay slot still
requires an instruction

beq $1,$4,L7
add $4,$6,$6

add $0,$0,$0

beq $1,$3,7

add $4,$6,$6

ClockClock

IF

11 66

EX

77

M

88

WB

ID

IF

22

WB

55

ID

33

EX M

44

lw $4, 50($7) EX M WBIF ID

instruction was before the branchinstruction was before the branch

Decision made in ID stage: branchDecision made in ID stage: branch

Do not need to discard instructionDo not need to discard instruction

Branch Hazards: Soln #3, Delayed Decision

No-Forwarding Forwarding Hazard
R-Format 1-3 1 Data

Load 1-3 1-2 Data, Structural

Store 1 1-2 Structural

Branch 2 1 Control
(decision is made in the ID stage)

Summary: Instruction Hazards

Branch 3 1 Control
(decision is made in the EX stage)

No Delay Slot Delay Slot Hazard

Jump 2 1

Structural Hazard: Instruction & Data memory combined.

Instruction Pipeline
Cycles

Instruction
Mix

loads

arithmetic

branches

stores

1.5
(50% dependancy)

1

1

1.25
(25% dependancy)

23%

13%

43%

19%

Clock
speed

500 Mhz
2 ns

CPI 1.18

MIPS 424 MIPS = Clock/CPI

jumps 2 2%

Single-
Cycle

1

1

1

1

125 Mhz
8 ns

1

125 MIPS

1

Multi-Cycle
Clocks

5

4

3

4

500 Mhz
2 ns

4.02

125 MIPS

3

= ΣΣΣΣ Cycles*Mix

Performance, page 504

branch time = 75%*(1 clocks) + 25%*(2 clocks) = 1.25
load instruction time = 50%*(1 clock) + 50%*(2 clocks)=1.5

Also known as the
instruction latency
with in a pipeline Pipeline

throughput

Pipelining and the cache (Designing…,M.J.Quinn, ‘87)

Instruction Pipelining is the use of pipelining to allow more
than one instruction to be in some stage of execution at the
same time.

Ferranti ATLAS (1963):
•••• Pipelining reduced the average time per instruction by 375%
•••• Memory could not keep up with the CPU, needed a cache.

Cache memory is a small, fast memory unit used as a buffer
between a processor and primary memory

Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality
• Temporal locality (locality in time)
 If an item is referenced, then

the same item will tend to be referenced soon
 “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
 If an item is referenced, then

nearby items will be referenced soon
 “the tendency to reference nearby data items”

Memories Technology and Principle of Locality

• Faster Memories are more expensive per bit

Memory
Technology

Typical access
time

$ per Mbyte

SRAM 5-25 ns $100-$250

DRAM 60-120 ns $5-$10

Magnetic Disk 10-20 million ns $0.10-$0.20

• Slower Memories are usually smaller in area size per bit

Memory Hierarchy

RegistersRegisters

PipeliningPipelining

Cache memoryCache memory

Primary real memoryPrimary real memory

Virtual memory (Disk, swapping)Virtual memory (Disk, swapping)

Fa
st

er

C
he

ap
er

 C
os

t $
$$

M
or

e
C

ap
ac

ity

CPUCPU

Basic Cache System

Cache Terminology

A hit if the data requested by the CPU is in the upper level

A miss if the data is not found in the upper level

Hit rate or Hit ratio
is the fraction of accesses found in the upper level

Miss rate or (1 – hit rate)
is the fraction of accesses not found in the upper level

Hit time
is the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

Miss penalty
is the time required to access data in the lower level
= <lower access time>+<reload processor time>

Cache Example

Processor

Data are transferred

Figure 7.2

Time 1: Hit: in cacheTime 1: Hit: in cache

Time 1: MissTime 1: Miss

Time 3: deliver to CPUTime 3: deliver to CPU

Time 2: fetch from
lower level into cache
Time 2: fetch from
lower level into cache

Hit time = Time 1 Miss penalty = Time 2 + Time 3

Cache Memory Technology: SRAM

• Why use SRAM (Static Random Access Memory)?

see reference: http://www.chips.ibm.com/products/memory/sramoperations/sramop.html

see page B-27

• Speed.
 The primary advantage of an SRAM over DRAM is speed.

 The fastest DRAMs on the market still require 5 to 10
 processor clock cycles to access the first bit of data.

 SRAMs can operate at processor speeds of 250 MHz
 and beyond, with access and cycle times
 equal to the clock cycle used by the microprocessor

• Density.
 when 64 Mb DRAMs are rolling off the production lines,
 the largest SRAMs are expected to be only 16 Mb.

Cache Memory Technology: SRAM (con’t)

• Volatility.
 Unlike DRAMs, SRAM cells do not need to be refreshed.
 SRAMs are available 100% of the time for reading & writing.

• Cost.
 If cost is the primary factor in a memory design,
 then DRAMs win hands down.

 If, on the other hand, performance is a critical factor,
 then a well-designed SRAM is an effective cost
 performance solution.

Cache Memory Technology: SRAM Block diagram

Cache Memory Technology: SRAM timing diagram

Cache Memory Technology: SRAM 1 bit cell layout

Ref: http://www.msm.cam.ac.uk/dmg/teaching/m101999/Ch8/index.htm

see page B-31

Memory Technology: DRAM Evolution

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a ch e

M e m o ry

00
1

01
0

01
1

10
0

10
1

11
0

11
1

• Direct Mapped: assign the cache location based on the
 address of the word in memory

• cache_address = memory_address modulo cache_size;

Observe there is a Many-to-1 memory to cache relationship

Direct Mapped Cache: Data Structure

There is a Many-to-1 relationship between memory and cache

How do we know whether the data in the cache corresponds
to the requested word?

tags
 • contain the address information required to identify
 whether a word in the cache corresponds to the
 requested word.

 • tags need only to contain the upper portion of the
 memory address (often referred to as a page address)

valid bit
 • indicates whether an entry contains a valid address

Direct Mapped Cache: Temporal Example

lw $1,22($0)lw $1,10 110 ($0)
lw $2,26($0)lw $2,11 010 ($0)
lw $3,22($0)lw $3,10 110 ($0)

Index Valid Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Y 10 Memory[10110]

Y 11 Memory[11010]

Miss: validMiss: valid
Miss: validMiss: valid
Hit!Hit!

Figure 7.6

Direct Mapped Cache: Worst case, always miss!

lw $1,22($0)lw $1,10 110 ($0)
lw $2,30($0)lw $2,11 110 ($0)
lw $3,6($0)lw $3,00 110 ($0)

Index Valid Tag Data
000 N
001 N
010 N
011 N
100 N
101 N
110 N
111 N

Y 10 Memory[10110]Y 11 Memory[11110]

Miss: validMiss: valid
Miss: tagMiss: tag
Miss: tagMiss: tag

Figure 7.6

Y 00 Memory[00110]

d d e s s (s o g b p o s o s)

2 0 1 0

B y t e �
o f f s e t

V a l i d T a g D a t aI n d e x
0
1
2

1 0 2 1
1 0 2 2
1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0
TagTag IndexIndex

Direct Mapped Cache: Mips Architecture

DataData

Compare TagsCompare Tags

Figure 7.7

HitHit

Modern Systems: Pentium Pro and PowerPC

Characteristic Intel Pentium Pro PowerPC 604
Cache organization Split instruction and data caches Split intruction and data caches
Cache size 8 KB each for instructions/data 16 KB each for instructions/data
Cache associativity Four-way set associative Four-way set associative
Replacement Approximated LRU replacement LRU replacement
Block size 32 bytes 32 bytes
Write policy Write-back Write-back or write-through

