
1

EECS 322 Test 2 solutions Wednesday March 21, 2001

Name: Email: ______________________________

Problem 1: A group of EECS students have decided to compete with Motorola Corporation in the
embedded DSP wireless network market. The RISCEE3 computer is a 16 bit single-cycle computer.

There is only 1 register (i.e. accumulator, called A). The PC and alu are eight bits wide.
Note: You can remove and keep the RISCEE3 and RISCEE4 diagrams from the exam.
Remember: anything AND with zero is always zero. Anything OR with one is one.

There is only one instruction format shown as follows:
Opcode
8 bits
15-8

Data8 or Address8 field
8 bits
7 - 0

(a) (12%) Fill in the settings of the control lines determined by the all the instructions (use X for Don’t Care)
Machine
Instruction

Operation RegDst ALU MemWrite RegWrite BZ P0

clear A = 0 2 4 0 1 0 0
addi data8 A = A + data8 2 5 0 1 0 0
add addr8 A = A + Memory[addr8] 0 3 0 1 0 0
store addr8 Memory[addr8] = A X 3 1 0 0 0
bne addr8 If (A != 0) { PC = addr8;} X 1 0 0 1 0
apc A = PC+2 3 X 0 1 0 0

(b) (20%) Using the above instruction set, fill in the code for the pseudo-instructions
Pseudo-
Instruction

Operation Assembly machine instructions (from part 1a)

loadi data8 A = data8 clear # A=0;
addi data8 # A=0+data8

load address8 A = Memory[addr8] clear # A=0;
add addr8 # A=0+Memory[addr8]

jmp address8 pc = address8 clear # A=0;
addi 1 # A=1; always not zero
bne addr8 # if (1 != 0) { pc = addr8; }

#alternate solution:
apc #A=PC; Assume PC not zero
bne addr8 #always branch

jal address8 A=PC+x; PC=addess8
Where A really contains
the return address after
the pseudo instruction
returns. (Assume PC
never becomes zero)

apc #A = PC+2:
addi 4 #…+ length of addi and bne
bne addr8

#!!!!return address here (=A)!

2

Problem 2: The Credit Suisse First Boston investment bank will only invest in the multi-cycle
RISCEE4 architecture for the machine instructions of problem 1a. Use X for Don’t Care. Assume
parts 2a, 2b, 2c are independent of each other. Assume the 8 bit memory system is smart and
loads the proper 16 bits in the IR register in one memory read cycle.

(a) (10%) Fill in the settings of the control lines needed for the “clear” instruction.
Clock
Step

Mem
Write

Mem
Read

IorD IR
write

P0 BZ PC
src

ALU
op

ALU
srcA

ALU
srcB

Reg
Write

Reg
Dst

T1 0 1 1 1 1 X 1 5 0 0 0 X fetch

T2 0 0 X 0 0 0 X X X X 0 X decode

T3 0 0 X 0 0 0 X 4 X X X X Aluout=0

T4 0 0 X 0 0 0 X X X X 1 0 A=aluout

T1 and T2: RegWrite could equal X here because clear instruction will overwrite it later in T4
 but since are used by all other instructions also at T1 and T2, RegWrite must equal 0.

Alternate solution: Merge T2 & T3 from above. During instruction decode set ALUOut to zero
Clock
Step

Mem
Write

Mem
Read

IorD IR
write

P0 BZ PC
src

ALU
op

ALU
srcA

ALU
srcB

Reg
Write

Reg
Dst

T1 0 1 1 1 1 X 1 5 0 0 0 X fetch

T2 0 0 X 0 0 0 X 4 X X 0 X Decode
Aluout=0

T3 0 0 X 0 0 0 X X X X 1 0 A=aluout

(b) (10%) Fill in the settings of the control lines needed for “add” from memory instruction.
Clock
Step

Mem
Write

Mem
Read

IorD IR
write

P0 BZ PC
src

ALU
op

ALU
srcA

ALU
srcB

Reg
Write

Reg
Dst

T1 0 1 1 1 1 X 1 5 0 0 0 X fetch

T2 0 0 X 0 0 0 X X X X 0 X decode

T3 0 0 X 0 0 0 X 1 X 3 0 X Aluout=
 IR[7:0]

T4 0 1 0 0 0 0 X X X X 0 X Memread

T5 0 0 X 0 0 0 X 5 1 1 0 X ALUout=
mdr+a

T6 0 0 X 0 0 0 X X X X 1 0 A=aluout

Alternate solution: Merge T2 & T3 from above. During instruction decode set ALUOut to addr8
Clock
Step

Mem
Write

Mem
Read

IorD IR
write

P0 BZ PC
src

ALU
op

ALU
srcA

ALU
srcB

Reg
Write

Reg
Dst

T1 0 1 1 1 1 X 1 5 0 0 0 X fetch

T2 0 0 X 0 0 0 X 1 X 3 0 X Decode
Aluout=
IR[7:0]

T3 0 1 0 0 0 0 X X X X 0 X Memread

T4 0 0 X 0 0 0 X 5 1 1 0 X ALUout=
mdr+a

T5 0 0 X 0 0 0 X X X X 1 0 A=aluout

(c) (10%) Fill in the settings of the control lines needed for “bne” instruction
Clock
Step

Mem
Write

Mem
Read

IorD IR
write

P0 BZ PC
src

ALU
op

ALU
srcA

ALU
srcB

Reg
Write

Reg
Dst

T1 0 1 1 1 1 X 1 5 0 0 0 X fetch

T2 0 0 X 0 0 0 X X X X 0 X decode

T3 0 0 X 0 0 1 2 1 1 X 0 X PC=
(A!=0)?
IR[7-0];

3

(d) (12%) Fill in the critical path times for each instruction. The delay time of the functional units are
as follows Memory Write 8 ns, Memory Read 5 ns, Register (read or write) and opcode decode 1 ns,
and ALU & Adders 2 ns.
Instruction Instruction

memory
Decode
& Register
Read

1st ALU
operation

Data
Memory

2nd ALU
operation

Register
Write

Total
Time

Clock
Cycles

clear 5 1 2 1 9 4

alternate
clear

5 1 1 7 3

addi 5 1 2 1 9 4

add 5 1 2 5 2 1 16 6

store 5 1 2 8 16 4

bne 5 1 2* 8 3

apc 5 1 2 1 9 4

 * Branch needs 2ns to compute zero value detect in ALU.
(e) (8%) Determine the fastest clock speed for the computer to work properly in frequency and show
why.
 { Graders: use the slowest resource from part 2d in columns 2 to 7 }

Clock period is the slowest resource in any one step: 8 ns
Clock frequency = 1/period = 1/8ns = 125 Mhz

(f) (18%) Fill in the Clock, CPI, and MIPS in the above table and show all calculations.

 { Graders: use the student’s own data from part 2d and 2e. Grade only CPI and MIPS }

Instruction Clock
Cycles

Instruction
Mix

clear 4 10%
addi 4 30%
add 6 20%
store 4 10%
bne 3 5%
apc 4 25%
Clock
speed

125 MHz

CPI 4.35 4*(10%+30%+10%+25%)+3*5%+6*20%=4*75%+3*5%+6*20%

MIPS 28.7 125 MHz/4.35

Alternate solution: Clear = 3 clocks
CPI = 4.25 = 4*(30%+10%+25%)+3*(10%+5%)+6*20%
MIPS = 29.4 = 125MHz/4.25

4

The technology group of Credit Suisse First Boston, www.tech.csfb.com, would like you to have
access to the following extra credit which can be only used for this exam and the previous exam.

{ Graders: Extra credit solutions are either right or wrong. No partial credit. }

a) (3%). Assemble the following machine instruction into binary & is located at address 0x17081812
Field 1 Fields 2 and etc. MIPS instruction
000011 00 0000 0000 0000 0000 0000 1101

= 0x17081868 −−−− (0x17081812 + 4)>>2 = 0xd
jal 0x17081868

* Alternate (correct answer): the instruction is not located on a word boundary.

b) (2%) Give the two’s complement of the 12 bit signed binary 0x911
−0x911 = (~0x911+1) = (~100100010001+1) = (011011101110+1) = 011011101111 = 0x6EF

c) (2%) Convert −−−−17 into a 5 bit signed binary. Not possible, cannot fit in 5 bits
17 = 16+1 = 10001; ~17 = 01110; ~17+1 = 01111; incorrect sign bit

d) (2%)Convert the 6 bit signed binary 111001 into decimal
1*−32 + 1*16 + 1*8 + 0*4 + 0*2 + 0*1 = −32+16+8+1= −−−−7

e) (5%) Add 0xF and 0xF and what is the signed overflow bit = 0 = Cout3 ^ Cin3

Cin 1 1 1
1 1 1 1
1 1 1 1

Sum 1 1 1 0

Cout 1 1 1 1

f) (3%) Multiply the 2 bit unsigned binary numbers 11 by 11 into a 4 bit unsigned binary number.
1 1
1 1
1 1

1 1
1 0 0 1

g) Assume the register size is 2-bits and contain some symbolic values, so that $s1=x and $s2=y.
Symbolic contents of $s1 Symbolic contents of $s2
X =11 Y =10

add $s1,$s1,$s2 X+Y =01 Y =10
sub $s2,$s1,$s2 X+Y =01 X = (X+Y) −−−− Y = 11
sub $s1,$s1,$s2 Y = (X+Y) −−−− X =00 X =11
(a) (3%) Fill in the symbolic values of the registers.

(b) (3%) What does this code symbolically do? Swap the contents of $s1 with $s2

(c) (3%) Will the code work for these 2-bit binary values, when $s1=11 and $s2=10 and give reason.
After the swap $s1 should be 10 and $s2 should be 11 but because the overflow or the register
size is too small, this symbolic swap give the wrong numerical results of $s1=00 and $s2=11

	Test 2 solutions
	Wednesday March 21, 2001
	Email: ______________________________
	
	A = data8
	
	A=aluout

	Alternate solution: Merge T2 & T3 from above. During instruction decode set ALUOut to zero
	A=aluout
	Aluout=� IR[7:0]
	Memread
	A=aluout

	Alternate solution: Merge T2 & T3 from above. During instruction decode set ALUOut to addr8
	Memread
	A=aluout
	PC=�(A!=0)?�IR[7-0];

	Instruction
	
	
	Clock frequency = 1/period = 1/8ns = 125 Mhz

	X =11
	
	
	
	
	X+Y =01
	X+Y =01
	X =11

