Name:

Email: _____

Problem 1: A group of EECS students have decided to compete with Motorola Corporation in the embedded DSP wireless network market. The RISCEE3 computer is a **16** bit <u>single</u>-cycle computer.

There is only **1 register** (i.e. accumulator, called A). The PC and alu are eight bits wide. **Note: You can remove and keep the RISCEE3 and RISCEE4 diagrams from the exam.** *Remember: anything AND with zero is always zero. Anything OR with one is one.*

There is only one instruction format shown as follows:

Opcode	Data8 or Address8 field
8 bits	8 bits
15-8	7 - 0

(a) Fill in the settings of the control lines determined by the all the instructions (use X for Don't Care)

Machine Instruction		Operation	RegDst	ALU	MemWrite	RegWrite	ΒZ	P0
clear		A = 0						
addi	data8	A = A + data8						
add	addr8	A = A + Memory[addr8]						
store	addr8	Memory[addr8] = A						
bne	addr8	If (A != 0) { PC = addr8;}						
apc		A = PC+2						

(b) Using the above instruction set, fill in the code for the pseudo-instructions

Pseudo- Instruction		Operation	Assembly machine instructions (from part 1a)
loadi	data8	A = data8	
load	address8	A = Memory[addr8]	
jmp	address8	pc = address8	
jal	address8	A=PC+x; PC=addess8 Where A really contains the return address after the pseudo instruction returns. (Assume PC never becomes zero)	

Problem 2: The Credit Suisse First Boston investment bank will only invest in the multi-cycle RISCEE4 architecture for the machine instructions of problem 1a. Use X for Don't Care. Assume parts 2a, 2b, 2c are independent of each other. **Do it in the <u>minimum</u> number of clocks.**

Clock Step	Mem Write	Mem Read	lorD	IR write	P0	ΒZ	PC src	ALU op	ALU srcA	ALU srcB	Reg Write	Reg Dst
T ₁												
T ₂												
T ₃												
T ₄												
T ₅												

(b) Fill in the settings of the control lines needed for "add" from memory instruction.

Clock Step	Mem Write	Mem Read	lorD	IR write	P0	ΒZ	PC src	ALU op	ALU srcA	ALU srcB	Reg Write	Reg Dst
T ₁												
T ₂												
T ₃												
T ₄												
T ₅												
T ₆												

(c) Fill in the settings of the control lines needed for "bne" instruction

Clock Step	Mem Write	Mem Read	lorD	IR write	P0	ΒZ	PC src	ALU op	ALU srcA	ALU srcB	Reg Write	Reg Dst
T ₁												
T ₂												
T ₃												
T ₄												
T ₅												
T ₆												

Problem 3. Look up the the following patent

•

US Patent 5153921 Microcomputer, 1992

using **http://www.delphion.com** with the search word as the patent number. Note: use the View Images for the first free 7 pages

Check the web for patent infringement. For example, http://www.intellectual.com/patinfr.htm or use http://www.google.com

(a) Briefly explain what claims (and sub items within a claim) match & don't match the RISCEE 3 architecture? Does RISCEE3 infringe on their patent?

⁽b) Briefly explain what claims (and sub items within a claim) match & don't match the RISCEE 4 architecture? Does RISCEE4 infringe on their patent?