
Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

EECS 322 Computer Architecture

WOPR RISC Project



RISC Project

Teams can choose from one of two programming projects:

Conversationial & Game Project:
     wopr: this program is inspired by the movie, wargames.

Each team must turn in a report which contains the following

(1) Cover sheet with up to 3 team members names & signatures

(2) Description of the problem, enhancements, & lessons learned.

(3) A flowchart of the functions: talk(), game_move(), strfind().

(4) Commented source code listing.

(5) Floppy disk of the (1)-(4).

(6) 5 minute demo with all members present.



Wopr: example

Here is an example of how the program should work

wopr

Shall we play a game?

Global thermonuclear War

Wouldn’t you prefer a good game of chess?

tic-tAc-Toe

X: please enter your move?

1

Keyword matching:
Search input for
“War”, “tic”, “tac”,
“toe”, and so on.

Keyword matching:
Search input for
“War”, “tic”, “tac”,
“toe”, and so on.

Case insensitive
string matching

Case insensitive
string matching

   X |   |
  ---+---+---
     | O |
  ---+---+---
     |   |



Wopr: con’t

X: please enter your move?

7

   X |   |
  ---+---+---
   O | O |
  ---+---+---
   X |   |

X: please enter your move?

6

   X | O |
  ---+---+---
   O | O | X
  ---+---+---
   X |   |



Wopr: con’t
X: please enter your move? 8

   X | O |
  ---+---+---
   O | O | X
  ---+---+---
   X | X | O

Draw. Game over.

Shall we play a game?

My name is Bill Gates.

What is your name, again?

bill from Seattle, Wa.

Bill,Shall we play a game?

not now.

logoff.



Wopr: functions
Write at least these functions (using MIPS register conventions):

main() # Main program: calls talk & game

talk() # 0:exit, 1:play game

game_print(&array) # prints the tic-tac-toe board
# player: 0=O, 1=X, -1=blank

game_init(&array) # initializes the board to blank

game_set(&array,position,player)

game_move(&array,player)

gets(char *string) # No system calls allowed

puts(char *string) # No system calls allowed

strcmp(s1,s2) # -1:s1<s2; 0:s1==S2; 1:s1>s2

strlower(string)

strfind(string,s1) #1:s1 not found, 0:s1 found

(see Appendix A & A-22)



Wopr: talk()
The talk function can be on any topic you want:

Wouldn’t you prefer a good game of chess?

can become (i.e. baseball, cooking, psychology, …)

Wouldn’t you prefer to talk about yourself?

I am very happy about myself.

Exactly, how happy are you?

...

By using the strfind() and combining it with logical ands and
logical or you can can have interesting responses.

1) At least a one 3 level logical AND condition nesting is
required in the program.

2) At least 3 different types of conversation pattern matching.

3) This will be graded for creativity



ANSI C Language function:  int puts(char *s) where
char *s is a pointer to a  string of bytes to be printed.

Puts prints each character until a null is encountered
(0x0a) in the string. A newline is then also printed to
the console.

Puts returns the number of characters written to the
console.

ANSI C Language function: char *gets(char *s) where
char *s is a pointer to a pre-allocated string of bytes.

Gets returns the original pointer *s passed in.

Gets inputs each character and echos it until a newline
is encountered (0x0a). The newline is not saved in the
final string. The returned string is null terminated.

ANSI C: gets and puts



Rx: Memory Mapped char i/o (Appendix A-36)

Receiver control status: memory address 0xffff0000

Unused Ready Bit

IF Ready bit is true THEN there is a new data character

Receiver data: memory address 0xffff0004

Unused    byte

Rx: li $t0,0xffff0000

lw $t1,0($t0) #get rx status

andi$t1,0x0001 #ready?

beq $t1,$zero,Rx #no

lbu $v0,4($t0) #yes - get byte



Tx: Memory Mapped character i/o

Transmitter control status: memory address 0xffff0008

Unused Ready Bit

IF Tx Ready bit is true THEN ok to output a character

Transmitter data: memory address 0xffff000c

Unused    byte

Tx: li $t0,0xffff0008

lw $t1,0($t0) #get tx status

andi$t1,0x0001 #ready?

beq $t1,$zero,Tx #no

stb $a0,4($t0) #yes - put byte



#Make sure -mapped_io is enabled on spim

rx_line:
 la $s0, rx_buffer #string pointer

li $t1, 0xffff0000
rx_line1:

lw $t2,0($t1) # ready?
andi $t2,$t2,1
beq $t2,$0,rx_line1 #no - loop

lbu $t2,4($t1) #yes - get char
sb $t2,0($s0) #..store it

addi $t2,$t2,-10 #carrage return?
beq $t2,$0,rx_done #yes - make it zero
addi $s0,$s0,1 #next string addr
j rx_line1

Rx_line: Read a line from the console.


