
CWRU EECS 322 1

Language of the Machine

EECS 322 Computer Architecture

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

Function Calling

CWRU EECS 322 2

Review: Control Flow

• A Decision allows us to decide which pieces of
code to execute at run-time rather than at compile-
time.

• C Decisions are made using conditional
statements within an if, while, do while or for.

• MIPS Decision making instructions are the
conditional branches: beq and bne.

• In order to help the conditional branches make
decisions concerning inequalities, we introduce a
single instruction: “Set on Less Than”called slt,
slti, sltu, sltui

CWRU EECS 322 3

Review: Control flow: if, ?:, while, for

• if (condition) s1; else s2;

 if (! condition) goto L1;

s1;

goto L2;

 L1: s2; /* else */

 L2:

 if (! condition) goto L1;

 variable=s1;

 goto L2;

 L1: variable=s2; /* else */

 L2:

• variable = condition ? s1 : s2;

• while (condition) s1;

 L2: if (! condition) goto L1;

s1;

goto L2;

 L1: /* exit loop */

init;

 L2: if (! condition) goto L1;

s1;

inc;

goto L2;

 L1: /* exit loop */

• for (init; condition; inc) s1;

CWRU EECS 322 4

Control flow: do-while

• while (condition) s1;

 L2: if (! condition) goto L1;

s1;

goto L2;

 L1: /* exit loop */

• do s1; while (condition);

 L2:

 s1;

 if (condition) goto L2;

 /* exit loop by fall though */

• for(s1;condition;) s1;• for(;condition;) s1;

• Tests the termination
condition at the top.

• Tests the termination
condition at the bottom
after making each pass
through the loop body.

• 0 or more times • 1 or more times

CWRU EECS 322 5

Control flow: break (from K&R)

• A break causes the innermost enclosing loop or switch to
be exited immediately.

i=0;

L2: if (i >= 10) goto L1;

j=0;

L4: if (j >= 10) goto L3;

if (i>=j) goto L3;

 a[i][j]=0;

j++;

goto L4;

 L3: /* exit loop */

i++;

goto L2;

 L1: /* exit loop */

/*clear lower triangle array*/

for(i=0; i<10; i++) {

for(j=0; j<10; j++) {

if (i>=j) break;

a[i][j]=0;

}

}

CWRU EECS 322 6

MIPS Goto Instruction

• In addition to conditional branches, MIPS has an
unconditional branch: j label

• Called a Jump Instruction:
jump (or branch) directly to
the given label without
needing to satisfy any
condition.

• Same meaning as (using C): goto label

• Technically, it’s the same as: beq $0,$0,label

• since it always satisfies the condition.

CWRU EECS 322 7

Structured programming (Programming Languages, K. Louden)

• Ever since a famous letter by E. W. Dijkstra in 1968, GOTOs
have been considered suspect, since

• they can so easily lead to unreadable “spaghetti” code.

• The GOTO statement is very close to actual machine code.

• Dijkstra proposed that its use be severely controlled or even
abolished.

• This unleashed one of the most persistent controversies in
programming, which still rages today...

• As Dijkstra pointed out, its “unbridled” use can compromise
even the most careful language design and lead to
undecipherable programs.

CWRU EECS 322 8

Structured programming (Programming Languages, K. Louden)

• efficiency: One group argues that the GOTO is
indispensable for efficiency & even for good structure.

• limited: Another argues that it can be useful under carefully
limited circumstances. (parsers, state machines).

• Such as state machines (LEX, YACC, parsers)

• Break out of deeply nested loop in one step

– C/C++ can only do inner most loop

– C/C++ can use exit flags in each loop level (ugly)

• GOTOs should only jump forward (never backward)

• Error handling (gotos are still more efficient)

– C/C++/Unix can use the signal() function

– C++ can use the throw/catch statements

• abolish: A third argues that it is an anachronism that should
truly be abolished henceforth from all computer languages.

CWRU EECS 322 9

Control flow: continue (from K&R)

• The continue statement is related to the break. C/C++ is
one of the few languages to have this feature.

• It causes the next iteration of the enclosing for, while, or
do loop to begin.

• In the while and do, this means that the condition part is
executed immediately.

• In the for, control passes to the increment step.

/* abs(array) */

for(i=0; i < n; i++) {

if (a[i] > 0) continue;

a[i] = -a[i];

}

i=0;

L2: if (i >= n) goto L1;

if (a[i] > 0) goto L2c;

a[i] = -a[i];

L2c: i++;

goto L2;

L1:

CWRU EECS 322 10

Logical Operators: && and | | (From K&R)

• More interesting are the logical operators && and | |.

• Expressions connected by && and | | are evaluated left to
right, and

• evaluation stops as soon as the truth or falsehood of the
result is know.

• Most C programs rely on the above properties:
(1) left to right evaluation (2) stop as soon as possible.

• Logical and (&&), logical or(| |), logical not (!)

–Logical operators imply order and sequential in nature

• Bitwise and (&), bitwise or (|), bitwise not (~)

– Bitwise operators imply no order and parallel in nature

CWRU EECS 322 11

Logical Operators: example (From K&R)

for(i=0; i<limit-1 && (c=getchar())!=‘\n’ && c!=EOF ; i++) {

a[i] = c;

}

• For example, here is a loop from the input function getline

i=0;

L2: if (i >= limit-1) goto L1;

c=getchar();

if (c == ‘\n’) goto L1;

if (c ==EOF) goto L1;

a[i] = c;

i++;

goto L2;

L1:

• Before reading a new
character it is necessary
to check that there is room
to store it in the array a.

• So the test i<limit-1 must
be made first

• Moreover, if the test fails,
we must not go on and
read another character

CWRU EECS 322 12

Review: slti example

• C code fragment

if (i < 20) { f=g+h; }

 else { f=g-h; }

• re-written C code

temp = (i < 20)? 1 : 0;

if (temp == 0) goto L1;

f=g+h;

goto L2;

L1:

 f=g-h;

L2:

• re-written C code

temp = (i < 20)? 1 : 0;

if (temp == 0) goto L1;

f=g+h;

goto L2;

L1:

 f=g-h;

L2:

• MIPS code

slti $t1,$s3,20

beq $t1,$0,L1

add $s0,$s1,$s2

j L2

L1:

sub $s0,$s1,$s2

L2:

• MIPS code

slti $t1,$s3,20

beq $t1,$0,L1

add $s0,$s1,$s2

j L2

L1:

sub $s0,$s1,$s2

L2:

The $0 register becomes
useful again for the beq

The $0 register becomes
useful again for the beq

CWRU EECS 322 13

signed char Array example

signed char Array:
 register int g, h, i;
 signed char A[66];
 g = h + A[i];

 add $t1,$t1,$s4
 lbu $t0,0($t1)
 slti $t1,$t0,128
 bne $t1,$0,L2
 ori $t0,0xff00
 lui $t0,0xfffff
 L2: add $s1,$s2,$t0

unsigned char Array:
 register int g, h, i;
 unsigned char A[66];
 g = h + A[i];

 add $t1,$t1,$s4
 lbu $t0,0($t1)
 add $s1,$s2,$t0

Load byte unsigned:
load a byte and fills
the upper 24 register
bits with zeros.

Load byte unsigned:
load a byte and fills
the upper 24 register
bits with zeros.

• Data types make a big impact on performance!

8 bit sign = 128 = 0x000000808 bit sign = 128 = 0x00000080

if ($t0 >= 128) { $t0 |= 0xffffff00; }if ($t0 >= 128) { $t0 |= 0xffffff00; }

CWRU EECS 322 14

C functions

main() {

int i, j, k, m;

i = mult(j,k); ... ;

m = mult(i,i); ...

}

int mult (int x, int y) {

int f;

for (f= 0; y > 0; y- -) {
 f += x;
}
return f;

}

What information must
compiler/programmer
keep track of?

• Functions, procedures one
of main ways to give a
program structure, and
encourage reuse of code.

• But they do not add any
more computational power.

CWRU EECS 322 15

• Function address

• Return address

• Arguments

• Return value

• Local variables

• Most problems above are solved simply by
using register conventions.

Calling functions: Bookkeeping

Labels

$ra

$a0, $a1, $a2, $a3

$v0, $v1

$s0, $s1, …, $s7

CWRU EECS 322 16

Calling functions: example

… c=sum(a,b); … /* a,b,c:$s0,$s1,$s2 */
}
int sum(int x, int y) {

return x+y;
}
address

1000 add $a0,$s0,$0 # x = a
1004 add $a1,$s1,$0 # y = b
1008 addi $ra,$0,1016 # $ra=1016
1012 j sum # jump to sum
1016 add $s2,$0,$v0 # c=$v0

...

2000 sum: add $v0,$a0,$a1 # x+y
2004 jr $ra # pc = $ra = 1016

Why jr $ra vs. j 1016 to return?Why jr $ra vs. j 1016 to return?

CWRU EECS 322 17

Calling functions: jal, jump and link

• Single instruction to jump and save return
address: jump and link (jal)

• slow way:
1008 addi $ra,$zero,1016 #$ra=1016
1012 j sum #go to sum

• faster way and save one instruction:
1012 jal sum # pc = $ra = 1016

• but adds more complexity to the hardware

• Why have a jal? Make the common case fast:
functions are very common.

CWRU EECS 322 18

Calling functions: setting the return address

• Syntax for jal (jump and link) is same as for j
(jump):

jal label # reg[$ra]=pc+4; pc=label

• jal should really be called laj for “link and jump”:

• Step 1 (link):
Save address of next instruction into $ra (Why?)

• Step 2 (jump):
Jump to the given label

CWRU EECS 322 19

Calling functions: return

• Syntax for jr (jump register):

jr $register # reg[$pc] = $register

• Instead of providing a label to jump to,
the jr instruction provides a register that contains
an address to jump to.

• Usually used in conjunction with jal,
to jump back to the address that
jal stored in $ra before function call.

CWRU EECS 322 20

Calling nested functions: example

int sumSquare(int x, int y) {
return mult(x, x)+ y;

}

• Something called sumSquare,
 now sumSquare is calling mult(x, x).

• So there’s a value in $ra that sumSquare wants to
jump back to,

– but this will be overwritten by the call to mult.

• Need to save sumSquare return address before call
to mult(x, x).

CWRU EECS 322 21

Calling nested functions: memory areas

• In general, may need to save some other info in
addition to $ra.

• When a C program is run, there are 3 important
memory areas allocated:

–Static: Variables declared once per program,
cease to exist only after execution completes

–Heap: Variables declared dynamically

–Stack: Space to be used by procedure during
execution; this is where we can save register
values

• Not identical to the “stack” data structure!

CWRU EECS 322 22

C memory Allocation

0

∞∞∞∞
Address

Code Program (.text segment)

Static Variables declared once per
program (.data segment)

Heap
Explicitly created space,
e.g., malloc(); C pointers

Stack
Space for saved
procedure information$sp

stack
pointer

CWRU EECS 322 23

Stack Discipline

• C,C++, Java follow “Stack Discipline”;

–e.g., D cannot return to A bypassing B

–Frames can be adjacent in memory

–Frames can be allocated, discarded as a LIFO
(stack)

Main A B
C

D

E

• So we have a register $sp
which always points to the
last used space in the
stack.

• To use stack, we decrement
this pointer by the amount
of space we need and then
fill it with info.

CWRU EECS 322 24

int sumSquare(int x, int y) {
return mult(x,x)+ y;

}

Compiling nested C func into MIPS

Epilogue

Prologue

Body

sumSquare:
subi $sp, $sp,12 # push stack stack

 sw $ra, 8($sp) # push return addr
sw $a1, 4($sp) # push y

 sw $a0, 0($sp) # push x
addi $a1, $a0,$0 # mult(x,x)
jal mult # call mult
lw $a0,0($sp) # pop x

 lw $a1,4($sp) # pop y
lw $ra, 8($sp) # pop return addr
add $v0,$v0,$a1 # mult()+y
addi $sp,$sp,12 # pop stack space
jr $ra

CWRU EECS 322 25

Frame Pointer

• The $fp points to the first word of the frame of a
function.

• A $sp might change during a function and so
references to a local variable in memory might have
different offsets depending where they are in the
function, making it harder to understand.

int f(int x, int y) {

int i, a=4, f;

for(i=0;i<10;i++) {

int a[20];
if (!i) { a[0]=x; } else { a[i]=a[i-1]+y; }
f=a[i];

} }

CWRU EECS 322 26

Memory Allocation

• C Procedure Call Frame

• Pass arguments ($a0-
$a3)

• Save caller-saved regs

• call function: jal

• space on stack ($sp-n)
 $sp@last word of frame

• Save callee-saved regs

• set $fp ($sp+n-4)
$fp@first word of frame

Saved
Registers

 $ra

saved $a0-a3

...
$fp

low

high
Address

stack
grows

Local
Variables

$sp

CWRU EECS 322 27

MIPS Register Summary

• Registers Total Regs

–$Zero, $0 1

–(Return) Value registers ($v0,$v1) 3

–Argument registers ($a0-$a3) 7

–Return Address ($ra) 8

–Saved registers ($s0-$s7) 16

–Temporary registers ($t0-$t9) 26

–Global Pointer ($gp) 27

–Stack Pointer ($sp) 28

–Frame Pointer ($fp), or $t10 29

• 2 for OS ($k0, $k1), 1 for assembler ($at)

