
CWRU EECS 322 1

Language of the Machine
EECS 322 Computer Architecture

Instructor: Francis G. Wolff
 wolff@eecs.cwru.edu

 Case Western Reserve University
This presentation uses powerpoint animation: please viewshow

Load, Store and Dense Arrays

CWRU EECS 322 2

Review: Design Abstractions

High Level Language
Program (e.g., C)

Assembly Language
Program (e.g. MIPS)

Machine Language
Program (MIPS)

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

An abstraction omits unneeded detail,
helps us cope with complexity

An abstraction omits unneeded detail,
helps us cope with complexity

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

lw $t0, 0($2)
lw $t1, 4($2)
sw $t1, 0($2)
sw $t0, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg[9:11] & MASK

CWRU EECS 322 3

Review: Registers

• Unlike C++, assembly instructions cannot directly
use variables. Why not?

clk

bit0bit31

•••

•••

•••

• Instruction operands are
registers: limited number
of special locations;
32 registers in MIPS
($r0 - $r31)

Why 32?

• Each MIPS register is 32 bits wide
Groups of 32 bits called a word in MIPS

Keep Hardware Simple

Performance issues: Smaller is faster

• A word is the natural size of the host machine.

CWRU EECS 322 4

Register Organization

• Viewed as a
tiny single-dimension array (32 words),
with an register address.

0

1

2

 3

32 bits of data

32 bits of data

32 bits of data

32 bits of data

. . .

29

30

31

32 bits of data

32 bits of data

32 bits of data

32 bits of data

28

$r0

$r1

$r2

 $r3

$r29

$r30

$r31

$r28

. . .

• A register address ($r0-$r31) is
an index into the array

CWRU EECS 322 5

ANSI C integers (section A4.2 Basic Types)

• Plain int objects have the natural size suggested by
the host machine architecture;

• the other sizes are provided to meet special needs

• Longer integers provide at least as much as shorter
ones,

• but the implementation may make plain integers
equivalent to either short integers, or long integers.

• The int types all represent signed values unless
specified otherwise.

• Examples: short x; int y; long z; unsigned int f;

CWRU EECS 322 6

Review: Compilation using Registers

• Compile by hand using registers:
int f, g, h, i, j;
f = (g + h) - (i + j);

add $s0,$s1,$s2 # $s0 = g+h

• Assign MIPS registers:
$s0=int f, $s1=int g, $s2=int h,

 # $s3=int i, $s4=int j

• MIPS Instructions:

Note: whereas C
declares its operands,
Assembly operands
(registers) are fixed
and not declared

Note: whereas C
declares its operands,
Assembly operands
(registers) are fixed
and not declared

add $t1,$s3,$s4 # $t1 = i+j

sub $s0,$s0,$t1 # f=(g+h)-(i+j)

CWRU EECS 322 7

ANSI C register storage class (section A4.1)

• Objects declared register are automatic, and
(if possible) stored in fast registers of the machine.

• The register keyword tells the compiler your intent.

• This allows the programmer to guide the compiler
for better results. (i.e. faster graphics algorithm)

• This is one reason that the C language is successful
because it caters to the hardware architecture!

• Previous example:
register int f, g, h, i, j;
f = (g + h) - (i + j);

If your variables exceed
your number of registers,
then not possible

If your variables exceed
your number of registers,
then not possible

CWRU EECS 322 8

Assembly Operands: Memory

• C variables map onto registers

• What about data structures like arrays?

• But MIPS arithmetic instructions
only operate on registers?

• Data transfer instructions
transfer data between registers and memory

Think of memory as a large single dimensioned
array, starting at 0

CWRU EECS 322 9

Memory Organization: bytes

• Viewed as a
large, single-dimension array, with an address.

• A memory address is an index into the array

• "Byte addressing" means that the
 index points to a byte of memory.

0

1

2

3

4

5

6

...

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

8 bits of data

• C Language:

–bytes multiple of word

– Not guaranteed though

char f;
unsigned char g;
signed char h;

CWRU EECS 322 10

Memory Organization: words

• Bytes are nice,
 but most data items use larger "words"

• For MIPS, a word is 32 bits or 4 bytes.

• 230 words with byte addresses 0, 4, 8, ... 232-4

• 232 bytes with byte addresses from 0 to 232-1

Note: Registers hold 32 bits of data
 = word size (not by accident)

0

4

8

12

32 bits of data

32 bits of data

32 bits of data

32 bits of data

. . .

CWRU EECS 322 11

Memory Organization: alignment

• MIPS requires that all words start at addresses
that are multiples of 4

• Called alignment: objects must fall on address
that is multiple of their size.

• (Later we’ll see how alignment helps performance)

0 1 2 3

Aligned

Not
Aligned

CWRU EECS 322 12

Memory Organization: Endian

• Words are aligned (i.e. 0,4,8,12,16,… not 1,5,9,13,…)
i.e., what are the least 2 significant bits of a word
address? Selects the which byte within the word

• How?

lsbmsb
1

3
2
A
6

B
3
5

0

1
2
3
4

5
6
7

• Little Endian address of least significant byte:
Intel 80x86, DEC Alpha

3 2 1 0
little endian byte 0

67

A231H = 4152110

53B6H = 2143010

A

2
3
1
5

3
B

0

1
2
3
4

5
6

• Big Endian address of most significant byte:
HP PA, IBM/Motorola PowerPC, SGI, Sparc

0 1 2 3

big endian byte 0

CWRU EECS 322 13

Data Transfer Instruction: Load Memory to Reg (lw)

• Load: moves a word from memory to register

• MIPS syntax, lw for load word:

example: lw $t0, 8($s3)

Called “offset” Called “base register”

• operation name

• register to be loaded
• constant and register

 to access memory

• MIPS lw semantics: reg[$t0] = Memory[8 + reg[$s3]]

CWRU EECS 322 14

lw example

s1
s2
s3

t0

g
h

A[0]

0

0xFFFFFFFF

A[8]

Then
 lw$t0,8($s3)

Adds offset “8”
to $s3 to select A[8],

 to put “42” into $t0•The value in
register $s3 is an
address
•Think of it as a
pointer into
memory

•The value in
register $s3 is an
address
•Think of it as a
pointer into
memory

Suppose:
 Array A address = 3000
 reg[$s3]=Array A
 reg[$t0]=12;
 mem[3008]=42;

reg[$t0]=mem[8+reg[$s3]]

=Hitchhikers Guide to the Galaxy

=mem[8+3000]=mem[3008]
=42

CWRU EECS 322 15

Data Transfer Instruction: Store Reg to Memory (sw)

• Store Word (sw): moves a word from register to memory

• MIPS syntax: sw $rt, offset($rindex)
• MIPS semantics: mem[offset + reg[$rindex]] = reg[$rt]

• MIPS syntax: lw $rt, offset($rindex)
• MIPS semantics: reg[$rt] = mem[offset + reg[$rindex]]

• MIPS syntax: add $rd, $rs, $rt
• MIPS semantics: reg[$rd] = reg[$rs]+reg[$rt]

• MIPS syntax: sub $rd, $rs, $rt
• MIPS semantics: reg[$rd] = reg[$rs]-reg[$rt]

CWRU EECS 322 16

Compile Array Example

C code fragment:
register int g, h, i;
int A[66]; /* 66 total elements: A[0..65] */

 g = h + A[i]; /* note: i=5 means 6rd element */

Compiled MIPS assembly instructions:

 add $t1,$s4,$s4 # $t1 = 2*i
add $t1,$t1,$t1 # $t1 = 4*i
add $t1,$t1,$s3 #$t1=addr A[i]
lw $t0,0($t1) # $t0 = A[i]
add $s1,$s2,$t0 # g = h + A[i]

CWRU EECS 322 17

Execution Array Example: g = h + A[i];

Instruction $s1 $s2 $s3 $s4 $t0 $t1
C variables g h A i

suppose (mem[3020]=38) ? 4 3000 5 ? ?

??? ?,?,? 42 4 3000 5 ? 20

lw $t0,0($t1) ? 4 3000 5 ? 3020

add $s1,$s2,$t0 ? 4 3000 5 38 20

add $t1,$t1,$s3 ? 4 3000 5 ? 20

add $t1,$t1,$t1 ? 4 3000 5 ? 10

add $t1,$s4,$s4 ? 4 3000 5 ? ?

CWRU EECS 322 18

Immediate Constants

C expressions can have constants:
i = i + 10;

MIPS using constants: (addi: add immediate)
 So common operations, have instruction to
 add constants (called “immediate instructions”)

addi $s3,$s3,10 # i = i + 10

MIPS assembly code:
Constants kept in memory with program
lw $t0, 0($s0) # load 10 from memory
add $s3,$s3,$t0 # i = i + 10

CWRU EECS 322 19

Constants: Why?

Why include immediate instructions?

Design principle: Make the common case fast

Why faster?

a) Don’t need to access memory
b) 2 instructions v. 1 instruction

CWRU EECS 322 20

Zero Constant

Also,perhaps most popular constant is zero.
MIPS designers reserved 1 of the 32 register to
always have the value 0; called $r0, $0, or “$zero”

Useful in making additional operations from
existing instructions;
copy registers: $s2 = $s1;

add $s2, $s1, $zero # $s2 = $s1 + 0

Load a constant: $s2 = number;
addi $s2, $zero, 42 # $s2 = 42

2’s complement: $s2 = –$s1;
sub $s2, $zero, $s1 # $s2 = – $s1

CWRU EECS 322 21

C Constants

C code fragment
int i;
const int limit = 10;

i = i + limit;

Is the same as
i = i + limit; /* but more readable */

And the compiler will protect you from doing this
limit=5;

CWRU EECS 322 22

Class Homework: Due next class

C code fragment:
register int g, h, i, k;
int A[5], B[5];

 B[k] = h + A[i+1];

1. Translate the C code fragment into MIPS

2. Execute the C code fragment using:
 A=address 1000, B=address 5000, i=3, h=10, k=2,
 int A[5]={24, 33, 76, 2, 19};
 /* i.e. A[0]=24; A[1]=33; … */ .

