
EECS 322 Computer Architecture

Improving Memory Access 1/3

 The Cache and Virtual Memory

Principle of Locality

• Principle of Locality
states that programs access a relatively small portion
of their address space at any instance of time

• Two types of locality

• Temporal locality (locality in time)
 If an item is referenced, then

the same item will tend to be referenced soon
 “the tendency to reuse recently accessed data items”

• Spatial locality (locality in space)
 If an item is referenced, then

nearby items will be referenced soon
 “the tendency to reference nearby data items”

Cache Terminology

A hit if the data requested by the CPU is in the upper level

A miss if the data is not found in the upper level

Hit rate or Hit ratio
is the fraction of accesses found in the upper level

Miss rate or (1 – hit rate)
is the fraction of accesses not found in the upper level

Hit time
is the time required to access data in the upper level
= <detection time for hit or miss> + <hit access time>

Miss penalty
is the time required to access data in the lower level
= <lower access time>+<reload processor time>

Direct Mapped Cache

0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1

00
0

C a ch e

M e m o ry

0
01

0
1

0

01
1

1
00

1
01

1
10

1
1

1

• Direct Mapped: assign the cache location based on the
 address of the word in memory

• cache_address = memory_address % cache_size;

Observe there is a Many-to-1 memory to cache relationship

(g p)

2 0 1 0

B y t e �
o f f s e t

V a l i d T a g D a t aI n d e x

0

1

2

1 0 2 1

1 0 2 2

1 0 2 3

T a g

I n d e x

H i t D a t a

2 0 3 2

3 1 3 0 1 3 1 2 1 1 2 1 0
TagTag IndexIndex

Direct Mapped Cache: Mips Architecture

DataData

Compare TagsCompare Tags

Figure 7.7

HitHit

Bits in a Direct Mapped Cache

How many total bits are required for a direct mapped cache
with 64KB (= 216 KiloBytes) of data
and one word (=32 bit) blocks
assuming a 32 bit byte memory address?

Cache index width = log2 words
= log2 216/4 = log2 214 words = 14 bits

Tag size = <block address width> – <cache index width>
 = 30 – 14 = 16 bits

Block address width = <byte address width> – log2 word
 = 32 – 2 = 30 bits

Cache block size = <valid size>+<tag size>+<block data size>
 = 1 bit + 16 bits + 32 bits = 49 bits

Total size = <Cache word size> ×××× <Cache block size>
 = 214 words ×××× 49 bits = 784 ×××× 210 = 784 Kbits = 98 KB
 = 98 KB/64 KB = 1.5 times overhead

The DECStation 3100 cache

DECStation uses a write-through cache
 • 128 KB total cache size (=32K words)
 • = 64 KB instruction cache (=16K words)
 • + 64 KB data cache (=16K words)

 • 10 processor clock cycles to write to memory

 In a gcc benchmark, 13% of the instructions are stores.

 • Thus, CPI of 1.2 becomes 1.2+13%x10 = 2.5
 • Reduces the performance by more than a factor of 2!

write-through cache
 Always write the data into both the
 cache and memory and then wait for memory.

Cache schemes

write-through cache
 Always write the data into both the
 cache and memory and then wait for memory.

write-back cache
 Write data into the cache block and
 only write to memory when block is modified
 but complex to implement in hardware.

 No amount of buffering can help
 if writes are being generated faster
 than the memory system can accept them.

write buffer
 write data into cache and write buffer.
 If write buffer full processor must stall.

Chip Area Speed

• Read hits

–this is what we want!

Hits vs. Misses

• Read misses

–stall the CPU, fetch block from memory,
deliver to cache, and restart.

• Write hits

–write-through: can replace data in cache and memory.

–write-buffer: write data into cache and buffer.

–write-back: write the data only into the cache.

• Write misses

–read the entire block into the cache, then write the word.

The DECStation 3100 miss rates

• A split instruction and data cache increases the bandwidth

6.1%

2.1%

5.4%

Benchmark
Program

gcc

Instruction
 miss rate

Data
miss rate

Effective split
miss rate

Combined miss
rate

4.8%

spice

1.2%

1.3%

1.2%

split cache has slightly
worse miss rate

split cache has slightly
worse miss rate

Why a lower miss rate?Why a lower miss rate?

Numerical programs
tend to consist of a lot
of small program loops

Numerical programs
tend to consist of a lot
of small program loops

Figure 7.9

Spatial Locality

• Temporal only cache
 cache block contains only one word (No spatial locality).

• Spatial locality
 Cache block contains multiple words.

• When a miss occurs, then fetch multiple words.

• Advantage
Hit ratio increases because there is a high
probability that the adjacent words will be

 needed shortly.

• Disadvantage
Miss penalty increases with block size

Spatial Locality: 64 KB cache, 4 words

• 64KB cache using four-word (16-byte word)
• 16 bit tag, 12 bit index, 2 bit block offset, 2 bit byte offset.

Address (showing bit positions)

16 12 Byte�
offset

V Tag Data

Hit Data

16 32

4K�
entries

16 bits 128 bits

Mux

32 32 32

2

32

Block offsetIndex

Tag

31 16 15 4 3 2 1 0

Figure 7.10

• Use split caches because there is more spatial locality in
code:

Performance Figure 7.11

6.1%

2.1%

5.4%

Program
Block size

gcc
=1

Instruction
 miss rate

Data
miss rate

Effective split
miss rate

Combined miss
rate

4.8%

gcc
=4

2.0%

1.7%

1.9%

4.8%

spice
=1

1.2%

1.3%

1.2%

spice
=4

0.3%

0.6%

0.4%

Temporal only split cache:
has slightly worse miss rate

Temporal only split cache:
has slightly worse miss rate

Spatial split cache: has
lower miss rate

Spatial split cache: has
lower miss rate

• Increasing the block size tends to decrease miss rate:

Cache Block size Performance

1 K B �

8 K B �

1 6 K B �

6 4 K B �

2 5 6 K B

2 5 6

4 0 %

3 5 %

3 0 %

2 5 %

2 0 %

1 5 %

1 0 %

5 %

0 %

M
is

s
ra

te

6 41 64

B lo c k s iz e (b y te s)

Figure 7.12

• Make reading multiple words easier by using banks of
memory

Designing the Memory System

C P U

C a ch e

B u s

M e m o ry

a . O n e - w o rd -w id e �
 m e m o ry o rg a n iza tio n �
�

C P U

B u s

b . W id e m e m o ry o rg a n iz a tio n

M e m o ry

M u ltip le xo r

C a ch e

C P U

C a c h e

B u s

M e m o ry�
b a n k 1

M e m o ry �
b a n k 2

M e m o ry�
b a n k 3

M e m o ry �
b a n k 0

c . In te r le a v e d m e m o ry o r g a n iza tio n

Figure 7.13

1-word-wide memory organization Figure 7.13

• 1-word-wide memory organization

• 1 cycle to send the address

• 15 cycles to access DRAM

• 1 cycle to send a word of data

If we have a cache block of 4 words

Then the miss penalty is
 =(1 address send) + 4××××(15 DRAM reads)+4××××(1 data send)
 = 65 clocks per block read

Thus the number of bytes transferred per clock cycle
= 4 bytes/word x 4 words/65 clocks = 0.25 bytes/clock

C P U

C a ch e

B us

M e m ory

a . O n e - w ord -w ide
 m e m ory o rga n iza tion

Suppose we have a system as follows

Interleaved memory organization Figure 7.13

• 4-bank memory interleaving organization

• 1 cycle to send the address

• 15 cycles to access DRAM

• 1 cycle to send a word of data

If we have a cache block of 4 words

Then the miss penalty is
 = (1 address send) + 1××××(15 DRAM reads)+ 4××××(1 data send)
 = 20 clocks per block read

Thus the number of bytes transferred per clock cycle
= 4 bytes/word x 4 words/17 clocks = 0.80 bytes/clock
we improved from 0.25 to 0.80 bytes/clock!

Suppose we have a system as follows C P U

C ache

B u s

M em o ry
b an k 1

M e m o ry
ba nk 2

M em o ry
b an k 3

M e m o ry
ba nk 0

c . In te rle ave d m e m o ry orga niza tio n

Wide bus: 4-word-wide memory organization Figure 7.13

• 4-word-wide memory organization

• 1 cycle to send the address

• 15 cycles to access DRAM

• 1 cycle to send a word of data

If we have a cache block of 4 words

Then the miss penalty is
 = (1 address send) + 1××××(15 DRAM reads)+ 1××××(1 data send)
 = 17 clocks per block read

Thus the number of bytes transferred per clock cycle
= 4 bytes/word x 4 words/17 clocks = 0.94 bytes/clock
we improved from 0.25 to 0.80 to 0.94 bytes/clock!

Suppose we have a system as follows
C P U

Bus

b. W id e m e m ory o rga n ization

M em ory

M ultip le xo r

C a ch e

Memory organizations Figure 7.13

Wide memory organization
Advantage

Fastest: 0.94 bytes/clock transfer rate
Disadvantage

Wider bus and increase in cache access time

Interleave memory organization
Advantage

Better: 0.80 bytes/clock transfer rate
Banks are valuable on writes: independently

Disadvantage
more complex bus hardware

One word wide memory organization
Advantage

Easy to implement, low hardware overhead
Disadvantage

Slow: 0.25 bytes/clock transfer rate

Chip Area Speed

