Due: Thursday, April 7, 2005
Name: \qquad Email: \qquad Grade: \qquad (100 points max)

1. (10%) Please answer the following True or False in the context of Boolean Algebra:
$\mathrm{T} \quad \mathrm{F} \quad \prod_{a b}(3)=\overline{\bar{a} \bar{b}}$
T \quad F $\quad a b+a b c=a b+a b d$
$\mathrm{T} \quad \mathrm{F} \quad \prod_{a b c}(1,7,3,5,6)=\sum_{a b c}(2,4,1,7,0)$
$\mathrm{T} \quad \mathrm{F} \quad \sum_{a b}(3)=\overline{\bar{a}+\bar{b}}$
T $\quad \mathrm{F} \quad a b \bar{c}+a b c=a b \bar{d}+a b d$
2. (10%) Use Boolean Algebra to establish the identity. Show the Theorem numbers (i.e. T1-T13) for each step of your proof:

Theorem	Expression
	$1=a(a+b)+(\bar{a}+b)(a+\bar{b})+\overline{a \bar{b}}$

3a. (20%) Show the optimal minimal circling in the k-map in minterm function $\prod_{a b c d}(2,3,5,7,8,9,13,15)$ in the left-hand figure below.

Minimal k-map

Static-1 hazard free k-map

3b. Give the MSOP in cube notation= \qquad

3c. Give the MSOP in symbolic boolean algebra= \qquad

3d. Show the optimal k-map designed to cover static-1 hazards in the right-hand figure above.

4a. (20%) Show the optimal multi-output minimal circling the terms and in the k-map in minterm function $F=\sum_{a b c d}=(2,3,5,7,8,9,13,15)$ and $G=\sum_{a b c d}=(2,3,4,6,8,9,12,14)$. Indicate which circle belongs to what function.

4b. Give the boolean algebra common term of multi-output $\mathrm{MSOP}=$ \qquad

4c. Give the boolean algebra multi-output MSOP of $\mathrm{F}=$ \qquad

4d. Give the boolean algebra multi-output MSOP of $\mathrm{G}=$ \qquad

4e. Draw and fill in the PLA:

5a. (20\%). Do the Quine-McCluskey Algorithm of $\sum_{a, b, c, d}(2,3,5,7,8,9,13,15)$.

Group	Minterms	0-cubes				

5b. Fill in the covering table

EPI?	PI-cubes										

5c. Give the boolean algebra $\mathrm{MSOP}=$

6a. (10%) Given $\sum_{a, b, c, d}(2,3,5,7,8,9,13,15)$ and the don't cares $(1,11,14)$, show the optimal k-map:

	$\bar{c} \bar{d}$	$\bar{c} d$	cd	$c \bar{d}$
$\bar{a} \bar{b}$				
$\bar{a} b$				
$a b$				
$a \bar{b}$				

6b. Give the boolean algebra MSOP of the k-map: \qquad
7. (10%) A programmer has written the following C code fragment (assume variables are 1-bit):
$\mathrm{f}=0$;
if $((\mathrm{a} \mid \mathrm{b}) \& \mathrm{c})\{$
if (b) $\{\mathrm{f}=1 ;\}$
\}
else if (a \& b) $\{\mathrm{f}=0 ;\}$
7a. Give the truth table for the variable f (assume that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are boolean values only):

7b. Give the optimal k-map of 7a.

7c. Give the boolean algebra MSOP of the k-map: \qquad

7d. Re-write as optimal C code:
$\mathrm{x} 1 .\left(5 \%\right.$ Extra credit) Write the C language for-loop for the recurrence equation, $t_{n}=2 t_{n}+n-1$, where $t_{0}=2$.
x2. (10% Extra credit) Write the 8051 assembler for the recurrence equation of problem x1, use R0 for variable i, R 1 for variable $n, \mathrm{R} 2$ for variable t.

Theorem	Relationship	Dual	XOR	Property
T1	$a 1=a$	$a+0=a$	$a \oplus 0=a$	Identity
T2	$a 0=0$	$a+1=1$	$a \oplus 1=\bar{a}$	Domination
T3	$a a=a$	$a+a=a$	$\begin{aligned} & a \oplus a=0 \\ & a \oplus a \oplus a=a \end{aligned}$	Idempotency
T4	$\overline{\bar{a}}$			Involution
T5	$a \bar{a}=0$	$a+\bar{a}=1$	$a \oplus \bar{a}=1$	Complement
T6	$a b=b a$	$a+b=b+a$	$a \oplus b=b \oplus a$	Commutative
T7	$(a b) c=a(b c)$	$(a+b)+c=a+(b+c)$	$(a \oplus b) \oplus c=a \oplus(b \oplus c)$	Associative
T8	$(a+b)(a+c)=a+b c$	$a(b+c)=a b+a c$	$a(b \oplus c)=a b \oplus a c$	Distributive
T9	$a(a+b)=a$	$a+a b=a$	$a \oplus a b=a \bar{b}$	Absorption Covering
T10	$(a+b)(a+\bar{b})=a$	$a b+a \bar{b}=a$	$a b \oplus a \bar{b}=a$	Combining
T11	$(a+b)(\bar{a}+c)(b+c)=(a+b)(\bar{a}+c)$	$a b+\bar{a} c+b c=a b+\bar{a} c$		Consensus Proof by k-map
T12	$a+a+\cdots+a=a$	$a a \cdots a=a$	$\begin{aligned} & a \oplus a \oplus \cdots \oplus a_{\text {odd }}=a \\ & a \oplus a \oplus \cdots \oplus a_{\text {even }}=0 \end{aligned}$	Generalized Idempotency
T13	$\overline{a+b}=\bar{a} \bar{b}$	$\overline{a b}=\bar{a}+\bar{b}$	$\overline{a b}=\bar{a} \oplus \bar{b} \oplus \bar{a} \bar{b}$	DeMorgan
XOR	$a b=a \oplus \bar{b} \oplus \bar{a} \bar{b}$	$a+b=a \oplus b \oplus a b$	$a \oplus b=\bar{a} \oplus \bar{b}=a \bar{b}+\bar{a} b$	Definition

