EECS 281: Homework \#4
Name: \qquad

Due: Tuesday, February 22, 2005
Email: \qquad
(0) Practice the Wakerly problems 2.1 (a,b,e), 2.7a, 2.9a, 2.10a, 2.12a, 2.37 but do not hand these in. See Wakerly website solutions http://www.ddpp.com/
(1) Using standard C++ precision and data types, convert the following into 8051 assembler syntax in column 2 (read as31 manpage) and convert the columns 3 to 6 in various base 2 binary complements in base 2 format.

	$\begin{gathered} 8051 \\ \text { definition } \end{gathered}$	big endian two's compl.	little endian two's compl.	big endian one's compl.	big endian signed magnitude
unsigned char $\mathrm{x}=$ 'a';	.byte 'a'	01100001			
unsigned char $\mathrm{x}=0$;					
$\begin{gathered} \text { signed } \\ \text { char } x=-1 ; \end{gathered}$					
$\begin{gathered} \text { unsigned } \\ \text { char } \mathrm{x}=0 \times 255 ; \end{gathered}$					
unsigned char $\mathrm{x}=255$;					
unsigned char $\mathrm{x}=256$;					
unsigned char $\mathrm{x}=0255$;					
$\begin{gathered} \text { signed } \\ \text { char } \mathrm{x}=255 ; \end{gathered}$					
$\begin{gathered} \text { signed } \\ \text { char } \mathrm{x}=-\mathrm{a} \text { '; } \end{gathered}$					
unsigned char $\mathrm{x}=127$;					
$\begin{gathered} \text { signed } \\ \text { char } \mathrm{x}=127 ; \end{gathered}$					
unsigned char $\mathrm{x}=128$;					
$\begin{gathered} \text { signed } \\ \text { char } \mathrm{x}=128 ; \end{gathered}$					
signed char $\mathrm{x}=-128$;					
unsigned char $\mathrm{x}=0128$;					
unsigned char $\mathrm{x}=-64$;					
$\begin{gathered} \text { signed } \\ \text { char } \mathrm{x}=013 ; \end{gathered}$					
signed short $\mathrm{x}=013$;					
signed short $x=$ 'a';					
signed short $\mathrm{x}=-\mathrm{a}$ ';					
unsigned short $\mathrm{x}=256$;					

Using $\mathrm{C}++$ convert the following using the following values:
register unsigned char $u, a=0 x 85, b=0 x a 7, c=03$;
register signed char $\mathrm{s}, \mathrm{w}=0 \mathrm{x} 81, \mathrm{x}=0 \mathrm{xa} 6, \mathrm{z}=-1$;
State if overflow or carry has occurred. Assign the 8051 registers as follows: $u=A, a=R 0, b=R 1$, $\mathrm{c}=\mathrm{R} 2, \mathrm{~s}=\mathrm{R} 3, \mathrm{w}=\mathrm{R} 4, \mathrm{x}=\mathrm{R} 5$; $\mathrm{z}=\mathrm{R} 6$; You can double check your work by using the C compiler:

```
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv) {
    unsigned char u, a=0x85, b=0xa7, c=03; signed char s, w=0x81, x=0xa6, z=-1;
    u= ~a; printf("u=hex=0x%x=0ctal=0%o=decimal=% d a=0x%x=%d\n", u, u, u, a, a, a);
}
```

	two's complement big endian	8051 instructions
$\mathrm{a}=0 \mathrm{x} 85 ;$	10000101b	mov r1,\#0x85
$\mathrm{b}=0 \mathrm{xa} 7$;		
$\mathrm{z}=-1$;		
$\mathrm{u}=\sim a ;$		mov a,r1; cpl a
$\mathrm{u}=-a ;$		
$\mathrm{u}=\mathrm{a}$ \& b ;		
$\mathrm{u}=\mathrm{a} \& \mathrm{w} ;$		
$\mathrm{u}=\mathrm{a} \mid \mathrm{b} ;$		
$\mathrm{u}=\mathrm{a} \mid \mathrm{b}$ \& $\mathrm{c} ;$		
$\mathrm{u}=\mathrm{a}^{\wedge} \mathrm{b}$;		
$\mathrm{u}=\mathrm{a}^{\wedge}{ }^{\prime} \mathrm{C}^{\prime}$;		
$\mathrm{u}=\mathrm{a}+{ }^{\prime} \mathrm{C}^{\prime} ;$		
$\mathrm{u}=\sim a+1 ;$		
$\mathrm{u}=\mathrm{a}-\mathrm{b}$;		
$\mathrm{u}=\mathrm{a} \ll 2 ;$		
$\mathrm{u}=\mathrm{a} \gg 2 ;$		
$\mathrm{s}=\sim w ;$		
$\mathrm{s}=-\mathrm{w}$;		
$\mathrm{s}=\mathrm{w}+\mathrm{x} ;$		
$\mathrm{s}=\mathrm{w}-\mathrm{x}$;		
$\mathrm{s}=\mathrm{w}^{\wedge} \mathrm{x}$;		
$\mathrm{s}=-z^{\wedge} \sim \mathrm{a} ;$		

3.Using the 8051 instruction, assemble the instruction by pencil and paper into hex, and then execute it showing the clock time in machine cycles:

Mem. Addr.	Machine instructions	Assembly	Clock Time	PC	OV	CY	AC	Reg. A	Reg. R1
$0 x 100$		MOV A,\#0xC8	0	$0 x 100$	0	0	0	0xff	0xff
		MOV R1,\#0x88							
		ADD A,R1							
		MOV DPL,A							
		CLR A							
		ADDC A,\#0x10							

