
EECS 281: Homework #4 Due: Tuesday, February 22, 2005

Name: Email:

(0) Practice the Wakerly problems 2.1 (a,b,e), 2.7a, 2.9a, 2.10a, 2.12a, 2.37 but do not hand these
in. See Wakerly website solutions http://www.ddpp.com/
(1) Using standard C++ precision and data types, convert the following into 8051 assembler
syntax in column 2 (read as31 manpage) and convert the columns 3 to 6 in various base 2 binary
complements in base 2 format.

8051
definition

big endian

two’s compl.
little endian
two’s compl.

big endian

one’s compl.

big endian

signed magnitude

unsigned

char x=’a’; .byte ’a’ 01100001

unsigned

char x=0;

signed

char x=−1;

unsigned

char x=0x255;

unsigned

char x=255;

unsigned

char x=256;

unsigned

char x=0255;

signed

char x=255;

signed

char x=−’a’;

unsigned

char x=127;

signed

char x=127;

unsigned

char x=128;

signed

char x=128;

signed

char x=−128;

unsigned

char x=0128;

unsigned

char x=−64;

signed

char x=013;

signed

short x=013;

signed

short x=’a’;

signed

short x=−’a’;

unsigned

short x=256;

1



Using C++ convert the following using the following values:
register unsigned char u, a=0x85, b=0xa7, c=03;

register signed char s, w=0x81, x=0xa6, z=-1;

State if overflow or carry has occurred. Assign the 8051 registers as follows: u=A, a=R0, b=R1,
c=R2, s=R3, w=R4, x=R5; z=R6; You can double check your work by using the C compiler:

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char *argv) {

unsigned char u, a=0x85, b=0xa7, c=03; signed char s, w=0x81, x=0xa6, z=-1;

u= ~a; printf("u=hex=0x%x=0ctal=0%o=decimal=%d a=0x%x=%d\n", u, u, u, a, a, a);

}

two’s complement big endian 8051 instructions

a = 0x85; 10000101b mov r1,#0x85

b = 0xa7;

z = −1;

u = ∼ a; mov a,r1; cpl a

u = −a;

u = a & b;

u = a & w;

u = a | b;

u = a | b & c;

u = a ˆ b;

u = a ˆ ’C’;

u = a + ’C’;

u = ∼ a + 1;

u = a − b;

u = a << 2;

u = a >> 2;

s = ∼ w;

s = − w;

s = w + x;

s = w - x;

s = w ˆ x;

s = −z ˆ ∼ a;

2



3.Using the 8051 instruction, assemble the instruction by pencil and paper into hex, and then
execute it showing the clock time in machine cycles:

Mem.
Addr.

Machine
instructions Assembly

Clock
Time PC OV CY AC Reg. A Reg. R1

0x100 MOV A,#0xC8 0 0x100 0 0 0 0xff 0xff

MOV R1,#0x88

ADD A,R1

MOV DPL,A

CLR A

ADDC A,#0x10

MOV DPH,A

Total Time=

3


