EECS 281: Homework \#3 Due: Tuesday, 28.09.2004

0. Practice the wakerly problems (see website soln.) and do not hand in: 2.1(a,b,e), 2.7a, 2.9a, 2.10a, 2.12a, 2.37.
1. Using standard $\mathrm{C}++$ precision and data types, convert the following into two's complement big-endian binary and if not, then show why not?:

unsigned char $\mathrm{x}={ }^{\prime} \mathrm{A}^{\prime} ;$	01000001	unsigned char $\mathrm{x}=0255 ;$	
unsigned char $\mathrm{x}=0 \mathrm{x} 255 ;$		unsigned char $\mathrm{x}=255 ;$	
signed char $\mathrm{x}=255 ;$		unsigned char $\mathrm{x}=0128 ;$	
unsigned char $\mathrm{x}=128 ;$		unsigned char $\mathrm{x}=0 \mathrm{xfa} ;$	
unsigned char $\mathrm{x}=35 ;$		unsigned char $\mathrm{x}=-35 ;$	
signed char $\mathrm{x}=127 ;$		signed char $\mathrm{x}=128 ;$	
signed char $\mathrm{x}=-128 ;$		signed char $\mathrm{x}=-0 \mathrm{x} 2 ;$	
signed char $\mathrm{x}=-07 ;$		signed short $\mathrm{x}=-2 ;$	
signed short $\mathrm{x}=35 ;$		signed short $\mathrm{x}=-35 ;$	
signed short $\mathrm{x}={ }^{\prime} \mathrm{a} \cdot ;$		signed short $\mathrm{x}=-{ }^{\prime} \mathrm{a}^{\prime} ;$	

2. Assume VHDL data types convert the following into two's complement big-endian binary:

signal x: std_logic_vector(4 downto 0$):=\mathrm{b} " 10111 " ;$	
signal x: std_logic_vector(0 to 4): $=\mathrm{b} " 10111 " ;$	
signal x: std_logic_vector(7 downto 0$):=\mathrm{o} " 45 " ;$	
signal x: std_logic_vector $(0$ to 7$):=\mathrm{x} " \mathrm{ab} " ;$	

3. Using $\mathrm{C}++/ \mathrm{C} \# /$ Java operator precedence, add the correct parenthesis (signed int $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} ;$):

4. Using VHDL operator precedence, add the correct parenthesis:
$\mathrm{a}<=\mathrm{b}+\mathrm{c} \operatorname{SRL} \mathrm{d}$ AND e XOR f OR NOT g MOD h * i - j;
5. Using $\mathrm{C}++$ convert the following into two's complement big-endian binary: where unsigned char $u, a=0 x 85, b=0 x 96, c=02$; signed char $s, w=0 x 80, x=0 x 96, y=0, z=0 x 15$;
For addition and subtraction indicate if overflow and/or carry has occurred.
Show work on a seperate piece of paper.

$\mathrm{u}={ }^{\sim} \mathrm{a}$;		$\mathrm{u}=-\mathrm{a}$;	
$\mathrm{u}=\mathrm{a} \& \mathrm{~b} ;$		$\mathrm{u}=\mathrm{a} \mid \mathrm{b}$ \& $\mathrm{c} ;$	
$\mathrm{u}=\mathrm{a}^{\wedge} \mathrm{b}$;		$\mathrm{u}=\mathrm{a}+\mathrm{b} ;$	
$\mathrm{u}=\mathrm{a}^{\wedge}{ }^{\prime} \mathrm{A}^{\prime} ;$		$\mathrm{u}=\mathrm{a}+{ }^{\prime} \mathrm{A}^{\prime} ;$	
$\mathrm{u}=\mathrm{a}-\mathrm{b} ;$		$\mathrm{u}=\mathrm{a}$ * $\mathrm{b} ;$	
$\mathrm{u}=\mathrm{a} \ll 2$;		$\mathrm{u}=\mathrm{a} \gg \mathrm{c} ;$	
$\mathrm{u}=\mathrm{a}^{*} \mathrm{~b}$;		$\mathrm{u}=\mathrm{a} \% \mathrm{~b} ;$	
$\mathrm{u}=\mathrm{a} / \mathrm{b} ;$		$\mathrm{u}=-\mathrm{a}$;	
$\mathrm{s}=-\mathrm{w}$;		$\mathrm{s}=-\mathrm{z}{ }^{\wedge} \sim \mathrm{x}$;	
$\mathrm{s}=\mathrm{w}$ \& x ;		$\mathrm{s}=\mathrm{w}$ ^ x ;	
$\mathrm{s}=\mathrm{w}+\mathrm{x}$;		$\mathrm{s}=\mathrm{w}-\mathrm{x} ;$	
$\mathrm{s}=\mathrm{x} \ll 2$;		$\mathrm{s}=\mathrm{x} \gg 2 ;$	

