EECS 281: Homework #3 Due: Tuesday, 28.09.2004

0. Practice the wakerly problems (see website soln.) and do not hand in: 2.1(a,b,e), 2.7a, 2.9a, 2.10a, 2.12a, 2.37.

1. Using standard C++ precision and data types, convert the following into two's complement big-endian binary and if not, then show why not?:

unsigned char $x = A';$	01000001	unsigned char $x = 0255;$
unsigned char $x = 0x255;$		unsigned char $x = 255;$
signed char $x = 255;$		unsigned char $x = 0128;$
unsigned char $x = 128;$		unsigned char $\mathbf{x} = 0\mathbf{x}\mathbf{fa};$
unsigned char $x = 35;$		unsigned char $x = -35;$
signed char $x = 127;$		signed char $x = 128;$
signed char $x = -128;$		signed char $x = -0x2;$
signed char $x = -07;$		signed short $x = -2;$
signed short $x = 35;$		signed short $x = -35;$
signed short $x = a';$		signed short $x = -a^{\prime}$;

2. Assume VHDL data types convert the following into two's complement big-endian binary:

signal x: std_logic_vector(4 downto 0):= b"10111";	
signal x: std_logic_vector(0 to 4):= b"10111";	
signal x: std_logic_vector(7 downto 0):= o"45";	
signal x: std_logic_vector(0 to 7):= x"ab";	

3. Using C + +/C #/Java operator precedence, add the correct parenthesis (signed int a, b, ..., w, x, y, z;):

a = w & x & y & z;	$\mathbf{a} = \mathbf{w} \mid \mathbf{x} \mid \mathbf{y} \& \mathbf{z};$
$\mathbf{a} = \tilde{\mathbf{x}} \mathbf{x} \mathbf{b} \mathbf{y} \mathbf{b} \tilde{\mathbf{z}};$	a = x y & z;
a = x y w & z;	a &= x & y & z;
a = x * y + z;	a = z + y * z;
a = z + y * z % w / v - c;	a = x & y z;
$a = z \mid y \& z;$	$a = \tilde{z} y \& z;$
$a += b + c >> d \& e \hat{f} \tilde{g} \%$	h * i - j;

4. Using VHDL operator precedence, add the correct parenthesis: $a \le b + c$ SRL d AND e XOR f OR NOT g MOD h * i - j;

5. Using C++ convert the following into two's complement big-endian binary:

where unsigned char u, a=0x85, b=0x96, c=02; signed char s, w=0x80, x=0x96, y=0, z=0x15; For addition and subtraction indicate if overflow and/or carry has occurred.

Show work on a seperate piece of paper.

u = ~ a ;	u = - a ;
u = a & b;	u = a b & c;
$u = a \hat{b};$	u = a + b;
$u = a ^ A';$	$\mathbf{u} = \mathbf{a} + \mathbf{A}\mathbf{A}\mathbf{B}$
u = a - b;	u = a * b;
u = a << 2;	u = a >> c;
u = a * b;	u = a % b;
u = a / b;	u = - a;
s = -w;	$s = -z \tilde{x};$
s = w & x;	$s = w \hat{x};$
s = w + x;	s = w - x;
$s = x \ll 2;$	s = x >> 2;