EECS 281:
Sample Test 3 (5 pages)
Email: \qquad Due: Tuesday, November 2, 2004
Name: \qquad Grade: \qquad (100 points max)

1. (10 points) Please answer the following True or False in the context of Boolean Algebra:

T $\mathrm{F} \quad \bar{a}+b=\bar{a} \bar{b}+b \quad$ (hint: k-map or truth table)
T $\quad \mathrm{F} \quad a \bar{a}=a \oplus a$
(Wakerly section 5.8.1 page 410-413)
$\mathrm{T} \quad \mathrm{F} \quad \sum_{a b}(1,2)=a \oplus b$
(hint: use truth table)
T $\quad \mathrm{F} \quad a=a b+\bar{b} a$
$\mathrm{T} \quad \mathrm{F} \quad \sum_{a b c}(0,2,4,5,6)=a \bar{b}+\bar{c}$
(hint: use k-map)
T $\quad \mathrm{F} \quad b+\bar{b}=\overline{a \bar{a}}$
$\mathrm{T} \quad \mathrm{F} \quad \sum_{a b c}(1,3,5,7)=\prod_{a b c}(2,4,6)$
T \quad F $\quad a+\bar{a} b=a+b$

T $\mathrm{F} \quad \overline{a+\bar{a}}=\bar{c} c \quad$ (see MIT problem set $1 \# 22$)
$\mathrm{T} \quad \mathrm{F} \quad \prod_{a b c}(1,2,5)=(a+b+\bar{c})(a+\bar{b}+c)(\bar{a}+b+\bar{c}) \quad$ (Wakerly, pg 208)
2. (10 points) Use Boolean Algebra to establish the identity. Show the Theorem numbers (i.e. T1-T13) for each step of your proof:

Theorem	Expression
	$c=\overline{(b+\bar{c})(a+\bar{c})}+c b+c \bar{b}$

3a. (15 points) Show the optimal mimimal circling in the k-map in minterm function $f(a, b, c, d)=(\bar{a} \oplus b)+\bar{a} c d+b c d$ (hint: replace xor as $a \oplus b$ with $a \bar{b}+\bar{a} b$):

	$\bar{c} \bar{d}$	$\bar{c} d$	$c d$	$c \bar{d}$
$\bar{a} \bar{b}$				
$\bar{a} b$				
$a b$				
$a \bar{b}$				

3b. Give the $\sum_{a b c d}=$ \qquad
3c. Give $\mathrm{MSOP}=$ \qquad

4a. (20 points) Show the optimal multi-output mimimal circling the terms and in the k-map in minterm function $F=\sum_{a b c d}=(4,12,13,15)$ and $G=\sum_{a b c d}=(6,13,14,15)$. Indicate which circle belongs to what function.

4b. Give the common term of multi-output $\mathrm{MSOP}=$ \qquad
4c. Give the multi-output MSOP of $\mathrm{F}=$ \qquad
4d. Give the multi-output MSOP of $\mathrm{G}=$ \qquad

4e. Fill in the PLA

5a. (20 points). Do the Quine-McCluskey Algorithm of $\sum_{a, b, c, d}(0,1,6,7,14,15)$.

Group	Minterms	0-cubes	Minterms	1-cubes	Minterms	2-cubes
G_{0}						
G_{1}						
G_{2}						
G_{3}						
G_{4}						

5b. Fill in the covering table

EPI?	Needed?	PI-cubes							

5c. Give the $\mathrm{MSOP}=$
5 d . Show the optimal k-map:

	$\bar{c} \bar{d}$	$\bar{c} d$	$c d$	$c \bar{d}$
$\bar{a} \bar{b}$				
$\bar{a} b$				
$a b$				
$a \bar{b}$				

5e. Give the MSOP of the k-map: \qquad

6a. (10 points) Given $\sum_{a, b, c, d}(0,1,6,7,14,15)$ and the don't cares $(2,8,10)$, show the optimal k-map:

6b. Give the MSOP of the k-map:
7. (15 points) A programmer as written the following C code fragment:

```
f=0;
if (a` b) {
    if (c) {f=1;}
}
else if (b|c) {f=1;}
else if (~b) {f=1;}
```

7a. Give the truth table for the variable f (assume that $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are boolean values only):

7 b . Give the optimal k-map of 7 a .

7c. Give the MSOP of the k-map: \qquad

7d. Re-write as optimal C code:
x1. (Extra credit 10 points) Using $C++$ data types for a machine that uses a char of 4-bits, convert the following into one's complement big-endian binary and if not, then show why not?: where signed char \mathbf{s}, $\mathbf{a}=6$, $\mathbf{b}=-3$; For addition and indicate if end-around-carry, overflow and/or carry has occurred. Show work.

Give unsigned char range:	
Give signed char range:	
unsigned char $\mathrm{x}=2 ;$	Wakerly Table 2-6, page 40
signed char $\mathrm{x}=-2 ;$	Wakerly section 2.5.6 page 38
$\mathrm{s}=(\sim \mathrm{a})+1 ;$	
$\mathrm{s}=\sim \mathrm{a} ;$	Wakerly section 2.5.6 page 38
$\mathrm{s}=-\mathrm{b} ;$	
$\mathrm{s}=\mathrm{a} \& \mathrm{~b} ;$	Hint: one's complement, not two's complement
$\mathrm{s}=\mathrm{a}+\mathrm{b} ;$	
$\mathrm{s}=\mathrm{a}-\mathrm{b} ;$	end-around-carry occurs here! Given in Wakerly section 2.7, page 44

Theorem	Relationship	Dual	XOR	Property
T1	$a 1=a$	$a+0=a$	$a \oplus 0=a$	Identity
T2	$a 0=0$	$a+1=1$	$a \oplus 1=\bar{a}$	Domination
T3	$a a=a$	$a+a=a$	$\begin{aligned} & a \oplus a=0 \\ & a \oplus a \oplus a=a \end{aligned}$	Idempotency
T4	$\overline{\bar{a}}$			Involution
T5	$a \bar{a}=0$	$a+\bar{a}=1$	$a \oplus \bar{a}=1$	Complement
T6	$a b=b a$	$a+b=b+a$	$a \oplus b=b \oplus a$	Commutative
T7	$(a b) c=a(b c)$	$(a+b)+c=a+(b+c)$	$(a \oplus b) \oplus c=a \oplus(b \oplus c)$	Associative
T8	$(a+b)(a+c)=a+b c$	$a(b+c)=a b+a c$	$a(b \oplus c)=a b \oplus a c$	Distributive
T9	$a(a+b)=a$	$a+a b=a$	$a \oplus a b=a \bar{b}$	Absorption Covering
T10	$(a+b)(a+\bar{b})=a$	$a b+a \bar{b}=a$	$a b \oplus a \bar{b}=a$	Combining
T11	$(a+b)(\bar{a}+c)(b+c)=(a+b)(\bar{a}+c)$	$a b+\bar{a} c+b c=a b+\bar{a} c$		Consensus Proof by k-map
T12	$a+a+\cdots+a=a$	$a a \cdots a=a$	$\begin{aligned} & a \oplus a \oplus \cdots \oplus a_{\text {odd }}=a \\ & a \oplus a \oplus \cdots \oplus a_{\text {even }}=0 \end{aligned}$	Generalized Idempotency
T13	$\overline{a+b}=\bar{a} \bar{b}$	$\overline{a b}=\bar{a}+\bar{b}$	$\overline{a b}=\bar{a} \oplus \bar{b} \oplus \bar{a} \bar{b}$	DeMorgan
XOR	$a b=a \oplus \bar{b} \oplus \bar{a} \bar{b}$	$a+b=a \oplus b \oplus a b$	$a \oplus b=\bar{a} \oplus \bar{b}=a \bar{b}+\bar{a} b$	Definition

