\qquad Email: \qquad Grade: \qquad (100 points max)

1. (16 points) Using $\mathrm{C}++$ data types for a machine that uses a char of 8 -bits, convert the following into two's complement big-endian binary and if not, then show why not?:

2. (16 points) Using $C++$ data types for a machine that uses a char of 10-bits, convert the following into two's complement big-endian binary and if not, then show why not?:

Give unsigned char range:	0 to 1023	
Give signed char range:	-512 to +511	
unsigned char $\mathrm{x}=$ ' $\mathrm{C}^{\prime} ;$	0001000011	
unsigned char $\mathrm{x}=0 \mathrm{xff} ;$	0011111111	
unsigned char $\mathrm{x}=129 ;$	0010000001	
signed char $\mathrm{x}=-$ 'C';	1110111101	
signed char $\mathrm{x}=-45 ;$	1111010011	
signed char $\mathrm{x}=-129 ;$	1101111111	

3. (5 points) Using $C++$ operator precedence, add the correct parenthesis (signed int $a, b, c, d, e, w)$:

4. (5 points) Using $\mathrm{C}++$ operator precedence, remove as many as possible parenthesis without changing the meaning:

$\left.\mathrm{w}=\left(\mathrm{a}^{(}+\mathrm{b}\right)^{*} \mathrm{c}\right)$;	$\mathrm{w}=(\mathrm{a}+\mathrm{b}){ }^{*} \mathrm{c}$
	$\mathrm{w}=\mathrm{a} * \mathrm{~b}^{*} \quad \& \quad(\mathrm{c} \mid \mathrm{d})$

5. (20 points) Using C ++ convert the following into two's complement big-endian binary that machine that uses a char of 4 -bits, where unsigned char u, $a=0 x 4, b=0 x 7, c=0 x f$; signed char $s, w=0 x 4, x=0 x 7, y=-1$; For addition and subtraction indicate if overflow and/or carry has occurred. Show work.

$\mathrm{u}=(\sim \mathrm{b})+1 ;$	$\mathrm{u}=1000+1=1001$
$\mathrm{u}=\mathrm{a} \& \mathrm{~b} ;$	$\mathrm{u}=0100 \& 0111=0100$ (Bitwise AND)
$\mathrm{u}=\mathrm{a}^{\wedge} \mathrm{b} ;$	$\mathrm{u}=010 \wedge^{\wedge} 0111=0011$ (Exclusive OR)
$\mathrm{u}=\mathrm{a}+\mathrm{b} ;$	$\mathrm{u}=0100+0111=1011$ (Addition, There is no overflow since both numbers are unsigned)
$\mathrm{u}=\mathrm{c} \gg 5 ;$	$\mathrm{u}=1111 \gg 5=0000$ (Overflow during the fifth shift)
$\mathrm{s}=-\mathrm{x} ;$	$\mathrm{x}=0111,-\mathrm{x}$ is going to be $-7 . \mathrm{s}=1001$
$\mathrm{~s}=\mathrm{w} \mid \mathrm{x} ;$	$\mathrm{s}=0100 \mid 0111=0111$
$\mathrm{~s}=\mathrm{w}+\mathrm{x} ;$	$\mathrm{s}=0100+0111$. There is an overflow causing wrong results.
$\mathrm{s}=\mathrm{w}-\mathrm{x} ;$	$\mathrm{s}=0100-0111=-3=1101$
$\mathrm{~s}=\mathrm{y} \gg 5 ;$	$\mathrm{s}=-1=1111 . \mathrm{s} \gg 5=1111$, overflow during the fifth shift. s is signed number

6. (5 points) Convert the 24-bit number 0x100457 to mime base64: _E_A_R_X
$0 \times 100457=000100000000010001010111$. For base64 conversion, 6 bits have to be combined at once.
Hence $0 \times 100457=000100000000010001010111=401723$
From the table $4=\mathrm{E}, 0=\mathrm{A}, 17=\mathrm{R}, 23=\mathrm{X}$.
7. (5 points) Write a "single" C code statement of setting both bit d_{3} and bit d_{1} to 0 in the variable char a and all other bits unchanged. (Note: a big endian bit position of char is $d_{7} d_{6} d_{5} d_{4} d_{3} d_{2} d_{1} d_{0}$)
A quick solution is : "a $=\mathrm{a} \& \neg(1 \ll 3) \& \neg(1 \ll 1)$;" and the code could be cleaned up as follows: "a $\&=\neg(1 \ll 3)$ $\& \neg(1 \ll 1) ; " \Rightarrow "$ a $\&=11110111_{2} \& 11111101_{2} ; " \Rightarrow " \mathrm{a} \&=11110101_{2} ; " \Rightarrow " \mathrm{a} \&=0 \mathrm{xF} 5 ; "$
8. (5 points) Write the "best" single C code statement of setting both bit d_{3} and bit d_{1} to 0 in the variable char a and all other bits unchanged. (Hint: a $?=0 \mathrm{x} ? ?$;)
"a $\&=0 x F 5 ; "$
9. (10 points) Write the C code function to return 1 if an integer if odd parity and 0 otherwise: unsigned int odd(unsigned int a); (note: multiply and divide not allowed). Example: odd(0x1a) is 1.

Best Code:

int odd(unsigned int a) \{ return bcount(a) \& 1; \}
bcount(a) is from problem 8 of Homework 4 Solutions
10. (13 points) Give the n-cube, k-map, and SOP of the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(3,5,6)$. Can this function be further minimized?

Figure 1: $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(3,5,6)$
x1. (extra credit, 5 points) Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(0,1,2,3)$. Show k -map, coverings on the k-map, and give minimized SOP.

Figure 2: $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(3,5,6)$
$x 2$. (extra credit, 5 points) Minimize the $f(a, b, c)$ minterms for $(0,1,2,3)$ and a Don't Care minterm of $(4,5,6,7)$. Show k-map, coverings on the k-map, and give minimized SOP.

Figure 3: $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(3,5,6)$
x3. (extra credit, 5 points) Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ minterms for $(0,1,2,3)$ and a Don't Care minterm of $(4,5,6,7)$. Show k-map, coverings on the k-map, and give minimized SOP.

Figure 4: f(a,b,c) minterms for $(3,5,6)$

