EECS 281:
Sample Test 2 (4 pages)
12, 2004

Name: \qquad Email: \qquad Grade: \qquad (100 points max)

1. Using $\mathrm{C}++$ data types for a machine that uses a char of 9 -bits and a short of $\mathbf{1 8}$ bits, convert the following into two's complement big-endian binary and if not, then show why not?:

Give signed char range:	
Give unsigned char range:	
Give signed short range:	
Give unsigned short range:	
unsigned char $\mathrm{x}={ }^{\prime} \mathrm{A}^{\prime} ;$	
unsigned char $\mathrm{x}=0 \mathrm{x} 255 ;$	
signed char $\mathrm{x}=255 ;$	
unsigned char $\mathrm{x}=128 ;$	
unsigned char $\mathrm{x}=35 ;$	
signed char $\mathrm{x}=127 ;$	
signed char $\mathrm{x}=-128 ;$	
signed char $\mathrm{x}=-07 ;$	
signed short $\mathrm{x}=35 ;$	
signed short $\mathrm{x}={ }^{\prime} \mathrm{a}^{\prime} ;$	

2. Using $\mathrm{C}++/ \mathrm{C} \# / J a v a$ operator precedence, add the correct parenthesis (signed int $\mathrm{a}, \mathrm{b}, \ldots, \mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z} ;$):

	$\mathrm{a}=$	x			W		\&	Z	
	-	y					/		v

3. Using VHDL operator precedence, add the correct parenthesis:
$\mathrm{a}<=\mathrm{b}+\mathrm{c}$ SRL d AND e XOR f OR NOT g MOD h * i -j ;
4. Using $\mathrm{C}++$ convert the following into two's complement big-endian binary that machine that uses a char
of 10-bits,: where unsigned char $u, a=0 x 85, b=0 x 96, c=02$; signed char $s, w=0 x 80, x=0 x 96, y=0, z=0 x 15$; For addition and subtraction indicate if overflow and/or carry has occurred.

$\mathrm{u}=\sim^{\sim} \mathrm{a} ;$	
$\mathrm{u}=\mathrm{a} \mathrm{\&} \mathrm{b} ;$	
$\mathrm{u}=\mathrm{a}^{\wedge} \mathrm{b} ;$	
$\mathrm{u}=\mathrm{a}^{\wedge}, \mathrm{A} ;$	
$\mathrm{u}=\mathrm{a}-\mathrm{b} ;$	
$\mathrm{u}=\mathrm{a} \ll 2 ;$	
$\mathrm{s}=-\mathrm{w} ;$	
$\mathrm{s}=\mathrm{w} \& \mathrm{x} ;$	
$\mathrm{s}=\mathrm{w}+\mathrm{x} ;$	

5. Convert the 24 -bit number 0×414243 to mime base64:

6. Convert the base 64 "T2s=" to ASCII: \qquad
7. What is the parity of 0×414243 (even or odd)?
8. Write a "single" C code statement of setting both bits 5 and 2 to 1 in the variable int a.
9. Write the C code function to count the number 1 bits in an integer: unsigned int bcount(unsigned int a); (note: multiply and divide not allowed). Example: bcount(0x1a) is 3 .
10. What is the hamming distance of 0 xAF and 0377 (show work)?
11. Give the n -cube, k -map, SOP of the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(0,1,4,5,6)$, then give the minimize SOP, then draw the logic gate schematic.

Solution see wakerly Figure 4-29 and read text.
12. Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ minterms for $(1,3,4,5,9,11,12,13,14,15)$. Show k-map, and label "prime implicants".

Solution see wakerly Figure 4-32 and read text.
13. Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ minterms for $(1,2,3,5,7)$ and a Don't Care minterm of $(10,11,12,13,14,15)$. Give k-map and Minimized SOP.

Solution see wakerly Figure 4-37 and read text.

