EECS 281: Homework #4 Due: Thursday, October 7, 2004

Name:	Email:
1. Convert the 24-bit number $0x414243$ to mi	me base64:
2. Convert the base64 "T2s=" to ASCII:	
3. What is the parity of $0x414243$ (even or or	ld)?
4. If $0x414243$ is odd parity number then is it	in error?
5. Write a "single" C code statement of setting	ng both bits 5 and 2 to 1 in the variable int a.
6. Write a "single" C code if statement of tes	ting bits 5 and 2 in the variable int a are both true.
7. Write the C code function for a nand: us Example: nand(0x12, 0x35) is 0xfffffeff.	nsigned int nand(unsigned int a, unsigned int b); no loops allowed.
8. Write the C code function to count the nur multiply and divide not allowed). Example: b	mber 1 bits in an integer: unsigned int bcount(unsigned int a); (note: bcount($0x1a$) is 3.
	position of the most significant bit: unsigned int bpos1(unsigned int Example: bpos1(16) is 4 and bpos1(17) is 4. How is this related to 2(17))?
10. Write the C code function to return 2**i allowed). Example: pow2(3) is 8.	: unsigned int pow2 (unsigned int i); (note: multiply and divide not
11. What is the hamming distance of $0xAF$ a	nd 0377 (show work)?
12. Write the C code function to compute the $\mathrm{H}(3,5)$ is 2.	e hamming distance: int H(unsigned int a, unsigned int b); Example
13. What is the hamming distance of 0 and 5	? 5 and 7? 0 and 7?
14. Draw the n-cube of the code set $\ 0, \ 5, \ 7$. of detection or correction does the code set $\ 0$	What is the minimum distance between all these codes? What level 9, 5, 7 have?
15. Give the n-cube, k-map, SOP of the f(a,b logic gate schematic.	o,c) minterms for (4, 6), then give the minimize SOP, then draw the
16. Give the SOP of the f(a,b,c) minterms for I	NOT(4, 6), then give the minimize SOP. Is it smaller than problem 15?

- 17. Give the n-cube, k-map and SOP of the f(a,b,c) minterms for (0, 3, 5, 6), then give the minimize SOP. Why didn't it get smaller?
- 18. Give the k-map and SOP before and after minimizing the f(a,b,c) minterms for (0, 3, 5, 6)?
- 19. Minimize the f(a,b,c,d) minterms for (0, 5, 8, 10, 13). Give n-cube, k-map and SOP.
- 20. Minimize the f(a,b,c,d) minterms for (0, 5, 8, 10, 13) and a Don't Care minterm of 2. Give n-cube, k-map and SOP. Is it smaller than problem 19?
- 21. Give the truth table, minterms, maxterms, n-cube, and k-map of 01x, 1x1, x11: