EECS 281: Homework \#4

Due: Thursday, October 7, 2004

Name: \qquad Email: \qquad

1. Convert the 24 -bit number 0×414243 to mime base 64 : \qquad
2. Convert the base 64 "T2s=" to ASCII: \qquad

3 . What is the parity of 0×414243 (even or odd)?
4. If 0×414243 is odd parity number then is it in error? \qquad
5. Write a "single" C code statement of setting both bits 5 and 2 to 1 in the variable int a.
6. Write a "single" C code if statement of testing bits 5 and 2 in the variable int a are both true.
7. Write the C code function for a nand: unsigned int nand(unsigned int a, unsigned int b); no loops allowed. Example: nand $(0 \mathrm{x} 12,0 \mathrm{x} 35)$ is $0 \mathrm{xfffffeff}$.
8. Write the C code function to count the number 1 bits in an integer: unsigned int bcount(unsigned int a); (note: multiply and divide not allowed). Example: bcount(0x1a) is 3 .
9. Write the C code function to return the bit position of the most significant bit: unsigned int bpos1 (unsigned int a); (note: multiply and divide not allowed). Example: bpos1(16) is 4 and $\operatorname{bpos} 1(17)$ is 4 . How is this related to the \log base 2 of a $\operatorname{trunc}(\log 2(17))$ or $\operatorname{ceil}(\log 2(17)) ?$
10. Write the C code function to return $2^{* *_{i}}$: unsigned int pow2(unsigned int i); (note: multiply and divide not allowed). Example: pow2(3) is 8 .
11. What is the hamming distance of $0 x A F$ and 0377 (show work)? \qquad
12. Write the C code function to compute the hamming distance: int H (unsigned int a, unsigned int b); Example $\mathrm{H}(3,5)$ is 2 .
13. What is the hamming distance of 0 and 5 ? ___ 5 and 7 ? ___ 0 and 7 ? _-_
14. Draw the n-cube of the code set $0,5,7$. What is the minimum distance between all these codes? What level of detection or correction does the code set $0,5,7$ have?
15. Give the n-cube, k-map, SOP of the $f(a, b, c)$ minterms for $(4,6)$, then give the minimize SOP, then draw the logic gate schematic.
16. Give the SOP of the $f(a, b, c)$ minterms for $\operatorname{NOT}(4,6)$, then give the minimize SOP. Is it smaller than problem 15 ?
17. Give the n-cube, k-map and SOP of the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(0,3,5,6)$, then give the minimize SOP. Why didn't it get smaller?
18. Give the k-map and SOP before and after minimizing the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ minterms for $(0,3,5,6)$?
19. Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ minterms for $(0,5,8,10,13)$. Give n-cube, k-map and SOP.
20. Minimize the $\mathrm{f}(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$ minterms for $(0,5,8,10,13)$ and a Don't Care minterm of 2 . Give n-cube, k-map and SOP. Is it smaller than problem 19 ?
21. Give the truth table, minterms, maxterms, n-cube, and k-map of $01 \mathrm{x}, 1 \mathrm{x} 1, \mathrm{x} 11$:

