SoC: System on a chip (beyond Processor)

The 2007 prediction: SoC's will be > 1B transistors

Design approaches

- Goal of each design flow methodology is to increase productivity of the design engineer
- Increasing the abstraction level of the design methodology and tools is one approach:

Gates/eng./month
Design Sizes

$1.5 \mathrm{~K}-6 \mathrm{~K}$
Synthesize Design, VHDL

10-5K gates

100K - 500K gates
> 1M gates

Levels of Abstraction: NMOS Transistor

Glue used for sample

Oxide-2
Oxide-1

SOI-2 grown from SOI-1

($\mathrm{B}=\mathrm{Bulk}$ Silicon substrate)

Shichman-Hodges model (spice level 1)

$$
I_{D}= \begin{cases}0, & V_{G S}-V_{T}<0, \text { cutoff region } \\ k^{\prime}(W / L)\left(\left(V_{G S}-V_{T}\right) V_{D S}-1 / 2 V_{D S}^{2}\right)\left(1-\lambda V_{D S}\right), & 0<V_{D S}<V_{G S}-V_{T} \text { linear (triode) region } \\ 1 / 2 k^{\prime}(W / L)\left(V_{G S}-V_{T}\right)^{2}\left(1-\lambda V_{D S}\right), & 0<V_{G S}-V_{T}<V_{D S} \text { saturation region }\end{cases}
$$

Shichman-Hodges model: I_{D} parameters (~8)

$I_{D}=\left\{\begin{array}{lll}0, & V_{G S}-V_{T}<0, & \text { cutoff region } \\ k^{\prime}(W / L)\left(\left(V_{G S}-V_{T}\right) V_{D S}-1 / 2 V_{D S}^{2}\right)\left(1-\lambda V_{D S}\right), & 0<V_{D S}<V_{G S}-V_{T}, & \text { linear region } \\ 1 / 2 k^{\prime}(W / L)\left(V_{G S}-V_{T}\right)^{2}\left(1-\lambda V_{D S}\right), & 0<V_{G S}-V_{T}<V_{D S}, & \text { saturation region }\end{array}\right.$
$\mathbf{k}^{\prime} \quad=\mathrm{KP}=\mu \mathrm{C}_{\mathrm{ox}}=$ (n-channel surface mobility)(gate oxide)
= process transconductance
W, L = effective channel width, length
$\boldsymbol{\lambda} \quad=$ LAMBA $=$ channel length modulation (i.e. slope)
$\mathbf{V}_{\mathrm{T}}=V_{T O}+\gamma\left(\sqrt{ }\left(V_{S B}+\psi\right)+\sqrt{ } \psi\right)=$ threshold voltage
$\mathrm{V}_{\mathrm{T} 0} \quad=\mathrm{VTO}=$ threshold voltage without substrate bias
V = GAMMA = body bias coefficient
$\boldsymbol{\Psi} \quad=\mathrm{PHI}=$ bulk fermi potential $=2 \mid(\mathrm{k}$ TEMP $/ \mathrm{q}) \ln \left(\mathrm{NSUB} / \mathrm{n}_{\mathrm{i}}\right) \mid$

$$
\mathrm{t}_{\text {min }}=\text { switching speed }=\frac{2 \mathrm{~L}^{2} C_{o \mathrm{ox}} V_{\mathrm{dd}}}{\mathrm{k}^{\prime}\left(\mathrm{V}_{\mathrm{dd}}-\mathrm{V}_{\mathrm{T}}\right)^{2}}
$$

Shichman-Hodges model (spice level 1)

$I_{D}=\left\{\begin{array}{lll}0, & V_{G S}-V_{T}<0, & \text { cutoff region } \\ k^{\prime}(W / L)\left(\left(V_{G S}-V_{T}\right) V_{D S}-1 / 2 V^{2}{ }_{D S}\right)\left(1-\lambda V_{D S}\right), & 0<V_{D S}<V_{G S}-V_{T}, & \text { linear region } \\ 1 / 2 k^{\prime}(W / L)\left(V_{G S}-V_{T}\right)^{2}\left(1-\lambda V_{D S}\right), & 0<V_{G S}-V_{T}<V_{D S}, & \text { saturation region }\end{array}\right.$

SPICE:

.model NCH nmos LEVEL=1 KP=48E-6 LAMBDA=0.032

$$
\mathrm{VTO}=0.88 \text { GAMMA }=0.66 \mathrm{PHI}=0.7
$$

.model PCH pmos LEVEL=1 KP=16E-6 LAMBDA=0.044

$$
\mathrm{VTO}=-0.85 \text { GAMMA }=0.69 \mathrm{PHI}=0.7
$$

Analog abstraction model: SPICE netlist

Process Technology

Level	Process	s ${ }_{0}$ parametersYear	
1	$\geq 4 \mu$	8	1968
2	$\geq 2 \mu$	23	1980
3	$\geq 2 \mu$	21	1980
4	$\geq 1 \mu$	67	1985
\# Transistors		Technology	Year
1		Bell Labs	1947
10		SSI: Logic, Flip Flops	1961
100-1000		MSI: Adders, counters	1966
1K-20K		LSI: 8-bit uP,ROM,RAM	1971
20K-		VLSI: 16/32-bit uP	1980

First Transistor: 1947

Shockley, Bardeen and Brattain

LSI: Intel Microprocessor History: 4004

- 1971 Intel 4004, 4-bit, 0.74 Mhz, 16 pins, 2250 Transistors

- Intel publicly introduced the world's first single chip microprocessor: U. S. Patent \#3,821,715.
- Intel took the integrated circuit one step further, by placing CPU, memory, I/O on a single chip

VLSI: Intel Microprocessor History: 8080

- 1974 Intel 8080, 8-bit, 2 Mhz, 40 pins, 4500 Transistors

Bill Gates \& Paul Allen

 write their first Microsoft software product: Basic
VLSI: Intel Microrocessor History: 8088

- 1979 Intel 8088, 16-bit internal, 8-bit external, 4.77 Mhz, 40 pins, 29000 Transistors

- 0.128M - 0.640M RAM
- 0.360Kb, 5.25" Floppy 10M Hard Disk

VLSI: Intel Processor History: Penitum Pro

- 1995 Intel Pentium Pro, 32-bit ,200 Mhz internal clock, 66 Mhz external, Superpipelining, 16Kb L1 cache, 256 Kb L2 cache, 387 pins, 5.5 Million Transistors

silicem prrocess
Intelles
 processours

Perntilumnco III
processor's

Penticuma pro processsor

Perntiunnmes
processmi

Intel4 4 : processor

Mritels: processtor

Background: Moore's Law

Moore's Law

Every 18 months:

-Gate count doubles
-Vector set grows 10x
-Frequency increases 50\%
Benchmark Design

- 0.18μ
- >600 MHz
- 10 million gates

- SoCs by the year 2007, predicts that the state of the art ICs will exceed 1 billion transistors.

Moore's law in perspective

- $0.13 \mu, 125 \mathrm{M}$, nVidia NV30, '02, graphics

100 M

- 0.18 $\mu, 42 \mathrm{M}$, Pentium IV, 67W, '00

10 M

- 0.35,$~ 7.2 \mathrm{M}$, Pentium II, '97
- $0.8 \mu, 3.1 \mathrm{M}$, Pentium, 16 W , '93
$1 \mathrm{M} \quad \bullet 1 \mu$, 1.2M, 486DX, 4W, '89
'94
'97
'00
'03
'06
'09

4M 16M 64M 256M \rightarrow DRAM capacities (manufacured by year)

Conventional Systems

- Systems are traditionally
composed of many separate chips: microprocessor, RAM, audio chips, ...
- New tech trends favor integration of all these components as embedded cores on a single Sytem-onChip (SoC).

SoC: System on a Chip

- Modern VLSI technology enables the integration of a multites of predefined core modules into a Systems-on-a-Chip (SoC).
- SoC is an enabling technology for embedded systems.
- Embedded systems handle and manipulate large volumes of data in real-time.
- Some Examples: Internet Appliances, PDAs, cell phones, MP3 players, ...

Digital abstraction model: Relays

What is the function $f(x, y)$?

$$
y \rightarrow G
$$

\mathbf{x}	\mathbf{y}	\mathbf{f}
$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{0}$	1	
$\mathbf{1}$	0	
1	1	

Z = No connection = tristate

Digital abstraction model: Relays

$$
I_{D}= \begin{cases}1, V_{G S}=0, & \text { cutoff } \\ 0, V_{G S}=1, & \text { saturation }\end{cases}
$$

$I_{D}= \begin{cases}0, V_{G S}=0, & \text { cutoff } \\ 1, v_{G S}=1, & \text { saturation }\end{cases}$

Digital abstraction model: Relays

Digital abstraction model (VHDL, Verilog)

Logic: Symbolic notation and definitions

1 True:
0 False:

- Assertion, buffer, $p: \quad p$ is true.
- - Negation: $\sim p, \operatorname{NOT}(p): \quad p$ is false.
$=-$ Conjunction, $p / q, p$ AND $q, p \& q$:
both p and q are true.
\Rightarrow-Disjunction, $p \vee q, p$ OR $q, p / q:$
either p is true, or q is true, or both.
$\Rightarrow D$-Exclusive Or, $p \oplus q, p \times O R q, p^{\wedge} q$:
either p is true or q is true, but not both.
$\rightrightarrows D$ Equivalence, $p \Leftrightarrow q, p \times N O R q, \sim\left(p^{\wedge} q\right)$:
p and q are either both true or both false.
Implication, $p \Rightarrow q$: if p is true, then q is true.

Logic: Truth Tables

Logic: DeMorgan's Theroem

Rule of Thumb:
(1) Complement each "dot" (2) Flip "AND" to "OR"

p	q	NAND	$\sim \mathrm{p}$	$\sim \mathrm{q}$	$\sim \mathrm{p} \mathrm{p} / \sim \mathrm{q}$
F	F	T	T	T	T
F	T	T	T	F	T
T	F	T	F	T	T
T	T	F	F	F	F

Logic: NANDs: equivalent forms

Can every logic function be defined just by using "only" NAND gates?

Logic: DeMorgan's Theroem

Same as

Rule of Thumb:
(1) Complement each "dot" (2) Flip "AND" to "OR"

Can every logic function be defined just by using "only" NOR gates?

Logic: Bubble pushing

Logic: CMOS "switch model" example

1. Given CMOS circuit:

2. Build truth table:

3. Deduce Logic gate(s):

Logic: CMOS example: $\mathrm{X}<=0 ; \mathrm{Y}<=0$;

1. Given CMOS circuit:

2. Determine logic type:

Treat CMOS as ON-OFF switches:
Turn these off

Logic: CMOS example: $\mathrm{X}<=0 ; \mathrm{Y}<=1$;

\author{

1. Given CMOS circuit:
}
2. Build truth table:

3. Determine logic type:

Logic: CMOS example: $X<=0 ; Y<=1$;

1. Given CMOS circuit:

2. Build truth table:

X	Y	F
0	0	1
0	1	0
1	0	0
1	1	0

3. Determine logic type:

NOR

Logic: NOR equivalent circuit

Logic: NAND sub-circuit

Logic: NOR

Gate?

Logic: Example \#1

Convert the following schematic to (a) SPICE, (b) truth table, (c) logic gates and (b) logic expression.

Logic: Example \#2

Convert the following equation: $s=(\sim a \& b) \mid(a \& \sim b)$ to (a) logic gates and (b) NAND only;

Modelling types

- Behavioral model
- Explicit definition of mathematical relationship between input and output
- No implementation information
- It can exist at multiple levels of abstraction
- Dataflow, procedural, state machines, ...
- Structural model
- A representation of a system in terms of interconnections (netlist) of a set of defined component
- Components can be described structurally or behaviorally

Nand gate: behaviorial, transistor, layout

Transistor

Mask

Adder: behavior, netlist, transistor, layout

Behavioral model
Structural model

Full Adder: alternative structural models

Are the behavioral models the same?

Logic Design flow

Half Adder

- A Half-adder is a Combinatorial circuit that performs the arithmetic sum of two bits.
- It consists of two inputs (x, y) and two outputs (Sum, Carry) as shown.

\underline{X}	\underline{Y}	Carry	Sum	Carry $<=X$ AND $Y ;$	
0	0	0	0	Sum $<=X$ XOR Y;	
0	1	0	1		
1	0	0	1		
1	1	1	0		

Behavioral Truth Table

Half Adder: behavioral properties

What are the behavioral properties of the half-adder ciruit?

Half Adder

- Event property

The event on a, from 1 to 0 , changes the output

- Propagation delay property

The output changes after 5ns propagation delay

- Concurrency property: Both XOR \& AND gates compute new output values concurrently when an input changes state ${ }_{n}$

Half Adder: Design Entity

- Design entity

A component of a system whose behavior is to be described and simulated

- Components to the description
- entity declaration

The interface to the design
There can only be one interface declared

- architecture construct

The internal behavior or structure of the design
There can be many different architectures

- configuration
bind a component instance to an entity-architecture pair

Half Adder: Entity

ENTITY half_adder IS

 PORT (a, b: IN std_logic; sum, carry: OUT std_logic
);
END half_adder;

- All keyword in capitals by convention
- VHDL is case insensitive for keywords as well as variables
- The semicolon is a statement separator not a terminator
- std_logic is data type which denotes a logic bit (U, X, 0, 1, Z, W, L, H, -)
- BIT could be used instead of std_logic but it is only ($0, \neq 7$) recs 2a1

Half Adder: Architecture

```
ENTITY half_adder IS
    PORT (
        a, b:
        Sum, Carry: OUT std_logic
    );
END half_adder;
```

IN std_logic;
Sum, Carry: OUT std_logic);
END half_adder;
must refer to entity name

ARCHITECTURE half_adder_arch_1 OF half_adder IS BEGIN

Sum <= a XOR b;
Carry <= a AND b;
END half_adder_arch_1;

Half Adder: Architecture with Delay

ENTITY half_adder IS

 PORT (a, b: IN std_logic;

Sum, Carry: OUT std_logic
);
END half_adder;
ARCHITECTURE half_adder_arch_2 OF half_adder IS BEGIN

$$
\begin{aligned}
& \text { Sum <= (a XOR b); } \\
& \text { Carry <= (a AND b); }
\end{aligned}
$$

END half_adder_arch_2;

Homework \#1: Problem 1

Convert the following schematic to (a) SPICE, (b) truth table, (c) logic gates (e) logic expression.

Homework \#1: Problem \#2

Re-write the following schematic as two logic expressions, sum=? And cout=? (b) as VHDL (c) and convert schematic using only NORs.

